Integrable system side 00000000000 Gauge theory side 0000 Correspondence

Brane realization

Summary 00

Wilson-'t Hooft lines as transfer matrices

Junya Yagi

Yau Mathematical Sciences Center, Tsinghua University

February 4, 2021

London Integrability Journal Club

Based on joint work with Kazunobu Maruyoshi and Toshihiro Ota

Gauge theory side 0000

Correspondence

Brane realization

Summary 00

Various connections between

supersymmetric QFTs \longleftrightarrow quantum integrable systems discovered in the past 10 years or so:

- Bethe/gauge correspondence (2d & 4d) [Nekrasov-Shatashvili]
- Bazhanov–Sergeev model from 4d $\mathcal{N} = 1$ quiver gauge theories [Spiridonov, Yamazaki]
- Surface defects as transfer matrices [Maruyoshi-Yagi]
- 4d Chern–Simons (= Ω-deformed 6d SYM [Costello-Y]) [Costello, Costello–Yamazaki–Witten]

• ...

Many of them are related by string dualities [Costello-Y].

Integrable system side 000000000000 Gauge theory side 0000

Correspondence

Brane realization

Summary 00

Quantization of Donagi-Witten integrable system

- + $\mathcal{N} = 2$ theory on $\mathbb{R}^3 \times S^1$ on Coulomb branch
- IR: $\mathcal{N} = 4$ sigma model on \mathbb{R}^3
- Target *M* is the phase space of a classical complex integrable system [Donagi–Witten]
- Ω -deformation on $\mathbb{R}^2 \subset \mathbb{R}^3$ quantizes \mathcal{M} [Nekrasov-Shatashvili, Nekrasov-Witten, Y]
- For class- ${\mathcal S}$ theories, ${\mathcal M}$ is a Hitchin system.

INTRODUCTION INTEGRABLE SYSTEM SIDE GAUGE THEORY SIDE CORRESPONDENCE BRA 0000 00000000000 0000 0000 0000 0000

Brane realization

SUMMARY

Surface defects as transfer matrices [Maruyoshi–Y, Y]

- $\mathcal{N} = 1$ theory constructed by "brane tiling" or of class \mathcal{S}_k
- Place it on $S^3 \times S^1$
- Insert surface defects on $S^1 \times S^1$
- Surface defects act on SUSY index as difference operators, shifting flavor fugacities [Gadde-Gukov, Gaiotto-Rastelli-Razamat]
- Coincide with transfer matrices of elliptic QIS
 [Maruyoshi-Y, Y]
- Simplest case: elliptic Ruijsenaars–Schneider system [GRR, Bullimore–Fluder–Hollands–Richmond]

INTEGRABLE SYSTEM SIDE

Gauge theory side 0000 Correspondence

Brane realization

Summary 00

We found a new correspondence:

Wilson-'t Hooft lines = transfer matrices

- $\mathcal{N} = 2$ circular quiver theory (class- \mathcal{S})
- Place it on $S^1 \times \mathbb{R}^3$
- Wind a Wilson–'t Hooft line *T* around *S*¹
- + $\langle T \rangle$ is a function of Coulomb branch parameters
- Quantization of $\langle T \rangle$ coincides with transfer matrix of trigonometric QIS

Related to other correspondences

INTEGRABLE SYSTEM SIDE •0000000000 Gauge theory side 0000

Correspondence

Brane realization

Summary 00

Consider a periodic spin chain

Spins $a^1, \ldots, a^n \in \mathfrak{h}^*$, $\mathfrak{h} = \text{Cartan of } \mathfrak{sl}_N$:

$$a^r = \operatorname{diag}(a_1^r, \dots, a_N^r), \qquad \sum_{i=1}^N a_i^r = 0$$

Local Hilbert space:

 $\mathcal{M}_{\mathfrak{h}^*} = \{\text{meromorphic functions on } \mathfrak{h}^*\}$

Total Hilbert space

$$\mathcal{H} = \underbrace{\mathcal{M}_{\mathfrak{h}^*} \otimes \cdots \otimes \mathcal{M}_{\mathfrak{h}^*}}_{n}$$

INTEGRABLE SYSTEM SIDE 00000000000 Gauge theory side

Correspondence

Brane realization

Summary 00

Equivalent lattice model

Spins live between double lines:

a^r are called dynamical parameters.

INTEGRABLE SYSTEM SIDE 00000000000 Gauge theory side 0000 Correspondence

Brane realization

Summary 00

Transfer matrix T(z) is horizontal loop operator:

Solid line = worldline of particle whose Hilbert space is \mathbb{C}^N

The particle's state changes when it crosses other lines.

Solid line also has spectral parameter $z \in \mathbb{C}$.

T(z) consists of *n* copies of L-operator

$$L(z) = z \longrightarrow$$

INTEGRABLE SYSTEM SIDE

Gauge theory side 0000

Correspondence

Brane realization

.

Summary 00

Dynamical parameters jump across solid lines:

$$L(z;a^1,a^2)_i^j = z \xrightarrow[a^1]{(i)} a^2 \xrightarrow[a^2 - \epsilon h_j]{(j)}$$

 $\epsilon \in \mathbb{C}$: fixed parameter (Planck constant)

 h_i are the weights of the vector rep \mathbb{C}^N :

$$\begin{split} h_1 &= \text{diag}(1 - \frac{1}{N}, -\frac{1}{N}, -\frac{1}{N}, \dots, -\frac{1}{N}), \\ h_2 &= \text{diag}(-\frac{1}{N}, 1 - \frac{1}{N}, -\frac{1}{N}, \dots, -\frac{1}{N}), \\ &\vdots \\ h_N &= \text{diag}(-\frac{1}{N}, -\frac{1}{N}, -\frac{1}{N}, \dots, 1 - \frac{1}{N}). \end{split}$$

INTEGRABLE SYSTEM SIDE

Gauge theory side

Correspondence

Brane realization

Summary 00

$$L(z; a^1, a^2)_i^j = z \xrightarrow[a^1]{(i)} a^2 \xrightarrow[a^1 - \epsilon h_i]{(j)} a^2 - \epsilon h_j$$

Matrix elements $L(z)_i^j$ are difference operators on $\mathcal{M}_{\mathfrak{h}^*} \otimes \mathcal{M}_{\mathfrak{h}^*}$:

$$\begin{split} L(z) &= \sum_{i,j} L(z;a^1,a^2)_i^j \Delta_i^1 \Delta_j^2 \,, \\ \Delta_i^r \colon a^r \mapsto a^r - \epsilon h_i \,. \end{split}$$

Transfer matrix

$$T(z) = \sum_{i^1, \dots, i^n} \prod_{r=1}^n L(z; a^r, a^{r+1})_{i^r}^{i^{r+1}} \prod_{s=1}^n \Delta_{i^s}^s, \qquad i^{n+1} = i^1$$

is a difference operator on $\mathcal{H} = \mathcal{M}_{\mathfrak{h}^*}^{\otimes n}$.

INTEGRABLE SYSTEM SIDE

Gauge theory side 0000 Correspondence

Brane realization

Summary 00

Crossing solid lines give R-matrix

R-matrix satisfies dynamical Yang–Baxter equation

Just like the ordinary Yang-Baxter equation

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$$

but with shifts in the dynamical parameters.

INTEGRABLE SYSTEM SIDE

Gauge theory side 0000

Correspondence

Brane realization

Summary 00

L-operator and R-matrix satisfy RLL relation

It follows that transfer matrices commute:

$$T(z)T(z') = T(z')T(z)$$

INTEGRABLE SYSTEM SIDE

Gauge theory side

Correspondence

Brane realization

Summary 00

Proof:

By RLL relation

Multiply both sides by R^{-1} :

Take the trace, making the horizontal direction periodic.

Gauge theory side 0000

Correspondence

Brane realization

Summary 00

Since

$$[T(z),T(z')]=0\,,$$

coefficients of Laurent expansion

$$T(z) = \sum_{m=-\infty}^{\infty} T_m z^m$$

are commuting difference operators on \mathcal{H} :

$$[T_m,T_n]=0.$$

This is integrability.

Introduction	INTEGRABLE SYSTEM SIDE	Gauge theory side	Correspondence	BRANE REALIZATION	Summary
0000	0000000000000	0000	0	0000000000000	00

Trigonometric L-operator [Hasegawa]

$$\mathcal{L}_{w,m}(z)_i^j = \sum_{i,j} (\Delta_i^1 \Delta_j^2)^{\frac{1}{2}} \frac{\sin \pi (z - w + a_j^2 - a_i^1)}{\sin \pi (z - w)} \ell_m(a^1, a^2)_i^j (\Delta_i^1 \Delta_j^2)^{\frac{1}{2}}$$

satisfies RLL relation with a trigonometric dynamical R-matrix (a limit of the 8vSOS R-matrix).

$$\ell_m(a^1, a^2)_i^j = \left(\frac{\prod_{k(\neq i)} \sin \pi(a_k^1 - a_j^2 - m) \prod_{l(\neq j)} \sin \pi(a_i^1 - a_l^2 - m)}{\prod_{k(\neq i)} \sin \pi(a_{ki}^1 - \frac{1}{2}\epsilon) \sin \pi(a_{ik}^1 - \frac{1}{2}\epsilon)}\right)^{\frac{1}{2}}$$

w, *m* \in \mathbb{C} are spectral parameters assigned to the double line:

$$\mathcal{L}_{w,m}(z) = z \xrightarrow{w,m}$$

٠

INTEGRABLE SYSTEM SIDE

Gauge theory side 0000

Correspondence

Brane realization

•

Summary 00

Introduce fundamental L-operators

$$\mathcal{L}_{\pm,m} = \lim_{w \to \pm i\infty} \mathcal{L}_{w,m}.$$

Then

$$(\mathcal{L}_{\pm,m})_i^j = \sum_{i,j} (\Delta_i^1 \Delta_j^2)^{\frac{1}{2}} e^{\pm \pi i (a_j^2 - a_i^1)} \ell_m(a^1, a^2)_i^j (\Delta_i^1 \Delta_j^2)^{\frac{1}{2}}$$

and

$$\mathcal{L}_{w,m}(z) = \frac{e^{\pi i(z-w)}\mathcal{L}_{+,m} - e^{-\pi i(z-w)}\mathcal{L}_{-,m}}{\sin \pi (z-w)}$$

We may as well consider $\mathcal{L}_{\pm,m}$ without loss of generality.

INTEGRABLE SYSTEM SIDE

Gauge theory side 0000 Correspondence

Brane realization

Summary 00

.

Pick *n*-tuple of signs

$$\sigma = (\sigma^1, \dots, \sigma^n) \in \{\pm\}^n$$

and *n*-tuple of complex numbers

$$m = (m^1, \ldots, m^n) \in \mathbb{C}^n$$

Let $\mathcal{T}_{\sigma,m}$ be the transfer matrix constructed from *n* L-operators

$$\mathcal{L}_{\sigma^1,m^1},\ldots,\mathcal{L}_{\sigma^n,m^n}.$$

$$\mathcal{T}_{\sigma,m} = \sum_{i^1,\dots,i^n} \left(\prod_{s=1}^n \Delta_{i_s}^s \right)^{\frac{1}{2}} \prod_{r=1}^n e^{\pi i \sigma^r (a_{i^{r+1}}^{r+1} - a_{i^r}^r)} \ell_{m^r} (a^r, a^{r+1})_{i^r}^{i^{r+1}} \left(\prod_{s=1}^n \Delta_{i_s}^s \right)^{\frac{1}{2}}$$

This is the main character on the integrable system side.

Gauge theory side •000 Correspondence

Brane realization

Summary 00

$\mathcal{N}=2$ gauge theories have half-BPS Wilson–'t Hooft lines.

Wolrdlines of very massive dyonic particles

Charge of WH line

 $(\mathbf{m}, \mathbf{e}) \in (\Lambda_{\text{coweight}} \times \Lambda_{\text{weight}})/\text{Weyl}$.

Wilson line has $\mathbf{m} = 0$ and is labeled by representation of \mathfrak{g} .

't Hooft line has $\mathbf{e} = 0$ and is labeled by representation of ${}^{L}\mathfrak{g}$.

Wilson-'t Hooft = ('t Hooft) + (Wilson for subgroup of *G* leaving **m** invariant)

Integrable system side 000000000000 GAUGE THEORY SIDE 0000 Correspondence

Brane realization

Summary 00

 $\mathcal{N} = 2$ gauge theory described by *n*-node circular quiver

Each node is SU(N) (more precisely, PSU(N)).

Edges are bifundamental hypers with masses m^1, \ldots, m^n .

Compactification of 6d $\mathcal{N} = (2, 0)$ SCFT on *n*-punctured torus

WH lines = surface defects wrapping 1-cycles of the torus

INTRODUCTION INTEGRABLE SYSTEM SIDE GAUGE THE

GAUGE THEORY SIDE

Correspondence

Brane realization

Summary 00

Consider Wilson–'t Hooft line $T_{\Box,\sigma}$ corresponding to

$$\gamma_{\sigma} = b + \sum_{r} \frac{1 - \sigma^{r}}{2} c^{r} \,.$$

If $\sigma^r = +1$ (-1), the cycle passes above (below) *r*th puncture.

 $\mathbf{m} = \Box \oplus \cdots \oplus \Box$ under $\mathfrak{su}_N \oplus \cdots \oplus \mathfrak{su}_N$

e specified by $\sigma \in \{\pm\}^n$

Integrable system side 000000000000 Gauge theory side

Correspondence

Brane realization

Summary 00

Put the theory on twisted product

 $S^1 \times_{\epsilon} \mathbb{R}^2 \times \mathbb{R}$.

Wrap $T_{\Box,\sigma}$ around $S^1 \times \{0\} \times \{t\}$.

Ito–Okuda–Taki tell us how to compute the vev by localization:

$$\langle T_{\Box,\sigma} \rangle = \sum_{i^1,\dots,i^n} \prod_{r=1}^n e^{2\pi i b_{i^r}^r} e^{\pi i \sigma^r (a_{i^{r+1}}^{r+1} - a_{i^r}^r)} \ell_{m^r} (a^r, a^{r+1})_{i^r}^{i^{r+1}}$$

in complexified Fenchel–Nielsen coordinates on Seiberg–Witten moduli space:

$$a = \frac{\theta_{\rm e}}{2\pi} + i\beta \operatorname{Re}\phi + \cdots, \quad b = \frac{\theta_{\rm m}}{2\pi} - \frac{4\pi i\beta}{g^2} \operatorname{Im}\phi + i\frac{\vartheta}{2\pi}\beta \operatorname{Re}\phi + \cdots$$

Alternatively, we can compute it from Toda theory by AGT.

Integrable system side 000000000000 Gauge theory side

Correspondence

Brane realization

Summary 00

Compare

$$\langle T_{\Box,\sigma} \rangle = \sum_{i^1,\dots,i^n} \prod_{r=1}^n e^{2\pi i b_{i^r}^r} e^{\pi i \sigma^r (a_{i^{r+1}}^{r+1} - a_{i^r}^r)} \ell_{m^r} (a^r, a^{r+1})_{i^r}^{i^{r+1}},$$

$$\mathcal{T}_{\sigma,m} = \sum_{i^1,\dots,i^n} \left(\prod_{s=1}^n \Delta_{i_s}^s \right)^{\frac{1}{2}} \prod_{r=1}^n e^{\pi i \sigma^r (a_{i^{r+1}}^{r+1} - a_{i^r}^r)} \ell_{m^r} (a^r, a^{r+1})_{i^r}^{i^{r+1}} \left(\prod_{s=1}^n \Delta_{i_s}^s \right)^{\frac{1}{2}}$$

If we quantize a^r , b^r so that

$$[\hat{a}_i^r, \hat{b}_j^s] = -\mathrm{i}rac{\epsilon}{2\pi}\delta^{rs}igg(\delta_{ij}-rac{1}{N}igg),$$

then

 $\mathcal{T}_{\sigma,m}$ = Weyl quantization of $\langle T_{\Box,\sigma} \rangle$.

LHS easily generalizes to other reps by fusion procedure, RHS does not due to monopole bubbling.

Integrable system side 000000000000 Gauge theory side 0000 Correspondence

BRANE REALIZATION

Summary 00

M-theory setup

12345 directions: twisted product $\mathbb{R}^2_{12} \times_{\epsilon} S^1_3 \times_{-\epsilon} \mathbb{R}^2_{45}$

M5: 6d $\mathcal{N} = (2,0)$ SCFT on $\mathbb{R}_0 \times \mathbb{R}^2_{12} \times_{\epsilon} S^1_3 \times S^1_6 \times S^1_{10}$

M5': *n* punctures on $S_6^1 \times S_{10}^1$

M2: surface defect

Reduction on $S_6^1 \times S_{10}^1$ gives the 4d setup with $\sigma = (+, ..., +)$.

Gauge theory side 0000

Correspondence

BRANE REALIZATION

Summary 00

Compactify
$$\mathbb{R}_9 \to S_9^1$$
:

Spacetime
$$\mathbb{R}_0$$
 \mathbb{R}_{12}^2 S_3^1 \mathbb{R}_{45}^2 S_6^1 \mathbb{R}_7 \mathbb{R}_8 S_9^1 S_{10}^1
 $N \text{ M5}$ \mathbb{R}_0 \mathbb{R}_{12}^2 S_3^1 S_6^1 S_{10}^1
 $n \text{ M5'}$ \mathbb{R}_0 \mathbb{R}_{12}^2 S_3^1 \mathbb{R}_8 S_9^1 $-$
 $M2$ S_3^1 S_6^1 $\mathbb{R}_8^{\geq 0}$ $-$

Reduce on S_3^1 :

 $S_{6}^{1} S_{6}^{1}$ Spacetime \mathbb{R}_7 \mathbb{R}_8 S_{9}^{1} \mathbb{R}_0 N D4 \mathbb{R}_0 S_{10}^1 R S_{9}^{1} \mathbb{R}_8 *n* D4 \mathbb{R}_0 $\mathbb{R}_8^{\geq 0}$ S_{6}^{1} F1

Integrable system side 00000000000 Gauge theory side 0000

Correspondence

BRANE REALIZATION

Summary 00

Spacetime
$$\mathbb{R}_0$$
 \mathbb{R}_{12}^2 \mathbb{R}_{45}^2 S_6^1 \mathbb{R}_7 \mathbb{R}_8 S_9^1 S_{10}^1
 $N \text{ D4}$ \mathbb{R}_0 \mathbb{R}_{12}^2 S_6^1 S_{10}^1
 $n \text{ D4}$ \mathbb{R}_0 \mathbb{R}_{12}^2 \mathbb{R}_8 S_9^1
 $F1$ S_6^1 $\mathbb{R}_8^{\geq 0}$ $-$

Apply T-duality $S_9^1 \rightarrow \check{S}_9^1$:

 $S_{6}^{1} \\ S_{6}^{1}$ \check{S}_{9}^{1} \check{S}_{9}^{1} Spacetime \mathbb{R}_0 \mathbb{R}^{2}_{12} \mathbb{R}^{2}_{45} \mathbb{R}_7 S_{10}^1 \mathbb{R}_8 \mathbb{R}_0 N D5 \mathbb{R}^2_1 S_{10}^{1} *n* D3 \mathbb{R}_0 \mathbb{R}_8 $\mathbb R$ $\mathbb{R}_8^{\geq 0}$ S_{6}^{1} F1 _

Integrable system side 000000000000 Gauge theory side 0000 Correspondence

BRANE REALIZATION

Summary 00

Spacetime
$$\mathbb{R}_0$$
 \mathbb{R}_{12}^2 \mathbb{R}_{45}^2 S_6^1 \mathbb{R}_7 \mathbb{R}_8 \check{S}_9^1 S_{10}^1
 $N D5 \mathbb{R}_0$ \mathbb{R}_{12}^2 S_6^1 \check{S}_9^1 S_{10}^1
 $n D3 \mathbb{R}_0$ \mathbb{R}_{12}^2 \mathbb{R}_8 $-$
 $F1 S_6^1$ $\mathbb{R}_8^{\geq 0}$ $-$

D5: 6d $\mathcal{N} = (1,1)$ SYM on $\mathbb{R}_0 \times \mathbb{R}^2_{12} \times S^1_6 \times \check{S}^1_9 \times S^1_{10}$

D3: codim-3 operator on $\mathbb{R}_0 \times \mathbb{R}^2_{12}$

F1: Wilson line on S_6^1

Ω-deformation on \mathbb{R}^2_{12} from nontrivial background, due to the initial twisted product in 12345 directions [Hellerman–Orland–Reffert].

Gauge theory side 0000 Correspondence

Brane realization

Summary 00

$$\begin{split} &\Omega\text{-deformed 6d }\mathcal{N}=(1,1) \text{ SYM on } \mathbb{R}_0\times \mathbb{R}^2_{12}\times S^1_6\times \check{S}^1_9\times S^1_{10}\\ &\rightsquigarrow \text{Costello's 4d Chern-Simons on } \mathbb{R}_0\times S^1_6\times \check{S}^1_9\times S^1_{10} \text{ [Costello-Y]} \end{split}$$
 $&\text{Codim-3 operators on } \mathbb{R}_0\times \mathbb{R}^2_{12}\\ &\rightsquigarrow \text{ line operators on } \mathbb{R}_0 \end{split}$ \end{split}

 \rightsquigarrow Wilson line on S_6^1

Topological on $\mathbb{R}_0 \times S_6^1$, holomorphic on $\check{S}_9^1 \times S_{10}^1$

 $2d TQFT + line defects \implies lattice model$

 $TQFT + extra dimensions \implies integrability [Costello]$

Wilson line gives transfer matrix of elliptic QIS with

 $\tau = \mathrm{i}R_{10}/\check{R}_9\,.$

Now, decompactify $S_9^1 \to \mathbb{R}_9$. Take $R_9 \to \infty$, or $\check{R}_9 \to 0$. This is the trigonometric limit $\tau \to i\infty$.

Integrable system side 000000000000

Gauge theory side 0000

Correspondence

BRANE REALIZATION

Summary 00

Spacetime
$$\mathbb{R}_0$$
 \mathbb{R}_{12}^2 \mathbb{R}_{45}^2 S_6^1 \mathbb{R}_7 \mathbb{R}_8 \check{S}_9^1 S_{10}^1
 $N \text{ D5}$ \mathbb{R}_0 \mathbb{R}_{12}^2 S_6^1 \check{S}_9^1 S_{10}^1
 $n \text{ D3}$ \mathbb{R}_0 \mathbb{R}_{12}^2 \mathbb{R}_8 $-$
 $F1$ S_6^1 $\mathbb{R}_8^{\geq 0}$ $-$

For Nekrasov–Shatashvili, apply S-duality:

Spacetime
$$\mathbb{R}_0$$
 \mathbb{R}^2_{12} \mathbb{R}^2_{45} S^1_6 \mathbb{R}_7 \mathbb{R}_8 \check{S}^1_9 S^1_{10}
 $N \text{ NS5 } \mathbb{R}_0$ \mathbb{R}^2_{12} S^1_6 \check{S}^1_9 S^1_{10}
 $n \text{ D3 } \mathbb{R}_0$ \mathbb{R}^2_{12} \mathbb{R}_8 $-$
 $\text{ D1 } S^1_6$ $\mathbb{R}^{\geq 0}_8$ $-$

Integrable system side 000000000000

Gauge theory side 0000

Correspondence

BRANE REALIZATION

Summary 00

Then T-duality on S_6^1 :

Integrable system side 000000000000 Gauge theory side

Correspondence

BRANE REALIZATION

Summary 00

Spacetime
$$\mathbb{R}_0$$
 \mathbb{R}_{12}^2 \mathbb{R}_{45}^2 \check{S}_6^1 \mathbb{R}_7 \mathbb{R}_8 \check{S}_9^1 S_{10}^1
 $N \text{ NS5 } \mathbb{R}_0$ \mathbb{R}_{12}^2 \check{S}_6^1 \check{S}_9^1 S_{10}^1
 $n \text{ D4 } \mathbb{R}_0$ \mathbb{R}_{12}^2 \check{S}_6^1 \mathbb{R}_8 $-$
 $\text{ D0 } \mathbb{R}_8^{\geq 0}$ $-$

D4–NS5: 4d \mathcal{N} = 2 theory for (N + 1)-node linear quiver

$$n - n - \cdots - n - n$$

placed on $\mathbb{R}_0 \times \mathbb{R}^2_{12} \times \check{S}^1_6$.

 Ω -deformation quantizes DW system (trigonometric Gaudin) \implies noncompact XXX spin chain

D0 is a local operator, acting as a transfer matrix.

Actuality, 9 & 10 directions are compact, so it's a 6d lift. We get the elliptic version of the integrable system.

Integrable system side 00000000000 Gauge theory side 0000

Correspondence

BRANE REALIZATION

Summary 00

Go back to M-theory

Reduce on S_{10}^1 :

Spacetime
$$\mathbb{R}_0$$
 \mathbb{R}_{12}^2 S_3^1 \mathbb{R}_{45}^2 S_6^1 \mathbb{R}_7 \mathbb{R}_8 \check{S}_9^1
 $N \,\mathrm{D4}$ \mathbb{R}_0 \mathbb{R}_{12}^2 S_3^1 S_6^1 $-$
 $n \,\mathrm{NS5}$ \mathbb{R}_0 \mathbb{R}_{12}^2 S_3^1 \mathbb{R}_8 \check{S}_9^1
 $\mathrm{D2}$ S_3^1 S_6^1 $\mathbb{R}_8^{\geq 0}$ $-$

Integrable system side 000000000000

Gauge theory side 0000

Correspondence

BRANE REALIZATION

Summary 00

Apply T-duality on S_9^1 :

INTRODUCTION INTEGRABLE SYSTEM SIDE GAU 0000 0000000000 000

Gauge theory side

Correspondence

BRANE REALIZATION

Summary 00

D5–NS5: 5d circular quiver theory on $\mathbb{R}_0 \times \mathbb{R}^2_{12} \times_{\epsilon} S^1_3 \times \check{S}^1_9$

D3: surface defect on $S_3^1 \times \check{S}_9^1$

We can add more NS5s, preserving 4d $\mathcal{N} = 1$ SUSY on $\mathbb{R}^2_{12} \times_{\epsilon} S^1_3 \times \check{S}^1_9$. This leads to the brane tiling story [Maruyoshi-Y].

Gauge theory side 0000 Correspondence

Summary •0

Summary

- We considered a class of Wilson–'t Hooft lines in 4d ${\cal N}=2$ circular quiver theories.
- We found that they can be identified with transfer matrices of trigonometric QIS.
- This is useful for calculuations of line operator vevs.
- By embedding into string theory, the correspondence can be related to other known correspondences via dualities.

Integrable system side 000000000000 Gauge theory side 0000 Correspondence

Brane realization

Summary O

Further directions

- Surface defects in 5d circular quiver theory correspond to transfer matrices of elliptic QIS.
- Variations of the present setup
- Circular quiver theories deconstruct 6d $\mathcal{N} = (2,0)$ SCFT. Integrability is behind surface operators in 6d theory.