2D dilaton-gravity and matrix models

Gustavo Joaquin Turiaci (UC Santa Barbara)

LIJC Jan, 2021

Plan of the talk

- Part 1: Pure Jackiw-Teitelboim gravity [Saad Shenker Stanford 19]
- Part 2: 2D dilaton-gravity [Maxfield, GJT 20] [Witten 20]
- Part 3: Connection to the minimal string [Mertens, GJT 20] [Usatyuk, Weng, GJT 20]

Jackiw-Teitelboim Gravity

Simple two dimensional theory of dilaton-gravity

$$I_{JT} = -\frac{S_0}{4\pi} \int R - \frac{1}{2} \int \phi(R+2) + I_{GHY}$$

• Asymptotically AdS_2 boundary conditions

$$\begin{split} \phi|_{\rm bdy} &= \frac{\gamma}{\varepsilon}, \ L|_{\rm bdy} = \frac{\beta}{\varepsilon} \\ &\varepsilon \to 0 \end{split}$$

- Theory reduces to a boundary mode
- Broken conformal symmetry [Almheiri, Polchinski 14] [Jensen 16]

[Maldacena, Stanford, Yang16] [Englesoy, Mertens Verlinde 16]...

• Final answer for disk partition function

$$Z_{\rm disk}(\beta) = e^{S_0} \sqrt{\frac{\gamma^3}{2\pi\beta^3}} e^{\frac{2\pi^2\gamma}{\beta}}$$

[Altland, Bagrets, Kamenev 16] [Stanford, Witten 17] [Mertens, GJT, Verlinde 17]

• Density of states:

$$\rho_{\rm JT}(E) = \frac{e^{S_0}}{4\pi^2} \sinh\left(2\pi\sqrt{2\gamma E}\right)$$

• Final answer for disk partition function

$$Z_{\rm disk}(\beta) = e^{S_0} \sqrt{\frac{\gamma^3}{2\pi\beta^3}} e^{\frac{2\pi^2\gamma}{\beta}}$$

[Altland, Bagrets, Kamenev 16] [Stanford, Witten 17] [Mertens, GJT, Verlinde 17]

• Density of states:

$$\rho_{\rm JT}(E) = \frac{e^{S_0}}{4\pi^2} \sinh\left(2\pi\sqrt{2\gamma E}\right)$$

• Problem: The spectrum is continuous! SFF decays in time forever, matter correlators, etc...

• Final answer for disk partition function

$$Z_{\rm disk}(\beta) = e^{S_0} \sqrt{\frac{\gamma^3}{2\pi\beta^3}} e^{\frac{2\pi^2\gamma}{\beta}}$$

[Altland, Bagrets, Kamenev 16] [Stanford, Witten 17] [Mertens, GJT, Verlinde 17]

• Density of states:

$$\rho_{\rm JT}(E) = \frac{e^{S_0}}{4\pi^2} \sinh\left(2\pi\sqrt{2\gamma E}\right)$$

- Problem: The spectrum is continuous! SFF decays in time forever, matter correlators, etc...
- Saad-Shenker-Stanford: This can be solved by allowing to sum over topologies

Sum over topologies

 In 2D topologies are classified by genus. We will also include the possibility of having any number of boundaries

Full gravitational path integral with *n* boundaries β_i and genus *g*

$$Z_{\text{grav}}(\beta_1,\ldots,\beta_n) = \sum_{g=0}^{\infty} e^{-(2g-2+n)S_0} Z_{g,n}(\beta_1,\ldots,\beta_n)$$

Full gravitational path integral with *n* boundaries β_i and genus *g*

$$Z_{\text{grav}}(\beta_1,\ldots,\beta_n) = \sum_{g=0}^{\infty} e^{-(2g-2+n)S_0} Z_{g,n}(\beta_1,\ldots,\beta_n)$$

Full gravitational path integral with *n* boundaries β_i and genus *g*

Integrate out the dilaton

Integrate over hyperbolic surfaces with R + 2 = 0

Full gravitational path integral with *n* boundaries β_i and genus *g*

Integrate out the dilaton

Integrate over hyperbolic surfaces with R + 2 = 0

Identify geodesics homologous to boundaries

Compute partition function of "trumpet" and bulk with geodesic boundaries

Full gravitational path integral with *n* boundaries β_i and genus *g*

Integrate out the dilaton

Integrate over hyperbolic surfaces with R + 2 = 0

Identify geodesics homologous to boundaries

Compute partition function of "trumpet" and bulk with geodesic boundaries

"Tree level exact": glue with Weil-Petersson measure

Ingredients

⇒ Weil-Petersson volumes, computed using Mirzakhani recursion

Sum over topologies

• Final answer obtained by gluing:

$$Z_{g,n}(\beta_1, \dots, \beta_n) = \int_0^\infty b_1 db_1 Z_{\text{trumpet}}(\beta_1, b_1) \cdots \int_0^\infty b_n db_n Z_{\text{trumpet}}(\beta_n, b_n) V_{g,n}(b_1, \cdots, b_n)$$

$$Z(\beta_1) \qquad \qquad b_1 \qquad \qquad b_2 \qquad \qquad Z(\beta_2)$$

 $Z(\beta_3)$

JT gravity and matrices

• SSS realized that the theory is equivalent, in a holographic sense, to a matrix integral of size $L \times L$, with $L \sim e^{S_0}$, such that

 Based on comparing Mirzakhani's recursion for Weil-Petersson volumes with matrix model loop equations

- **JT gravity:** Computed in terms of WP volumes. They satisfy a recursion of their own found by Mirzakhani.
- Matrix Integral: Computed in terms of the topological recursion of matrix models with $\rho_{\rm disk} = \rho_{JT}(E)$

Eynard and Orantin proved that both recursions are identical (up to an integral transform)

SSS: This implies that pure JT gravity is holographically dual to a matrix integral, interpreted as an average over Hamiltonians

The Factorization Puzzle

• Smoking gun of holography with disorder: [Yau Witten 99] ...

 $Z_{\text{grav}}(\beta_1, \beta_2) \neq Z_{\text{grav}}(\beta_1) Z_{\text{grav}}(\beta_2)$

• A possible answer is to add "baby universe" Hilbert space.

[Coleman; Giddings Strominger 88]

• This does not quite work when computing entanglement entropies: an average quantum system is not necessarily a quantum system

[Giddings GJT 20]

JT gravity with a gas of defects

- Motivations for doing this:
 - 1. Generalize the dual matrix integral to general dilaton gravity theories
 - 2. Application to 3D gravity

[Maxfield, GJT 20] [Witten 20]

- Repeat the same procedure but allow the presence of dynamical defects.
 Sum over any number of them and any position.
 - Defect fugacity: λ

• Deficit angle: $\theta = 2\pi(1 - \alpha)$

2D dilaton-gravity

• A defect is equivalent to inserting $\lambda \int \sqrt{g} e^{-2\pi(1-\alpha)\phi}$ in the JT path integral.

[Mertens, GJT 19]

• Then JT gravity with a gas of defects is equivalent to the following modification of the action

$$I = -\frac{1}{2} \int d^2x \sqrt{g}(\phi R + U(\phi))$$

With potential $U(\phi) = 2\phi + 2\sum_i \lambda_i : e^{-2\pi(1-\alpha_i)\phi}:$

• This covers a large class of two-derivative pure dilaton-gravity.

Cut and glue v2

For defecit angles that satisfy $\alpha < 1/2$ there is always a geodesic homologous to the holographic boundary. Therefore we can still use trumpets to glue. For example

[Tan Wong Zhang] [Do Norbury]

Cut and glue v2

The fact that we restrict to $\alpha < 1/2$ is important. Consider for example the following two situations

Now the calculation becomes the same as in JT gravity but with a double expansion. We can also generalize to several flavors of defects:

$$\left\langle Z(\beta_1)\cdots Z(\beta_n)\right\rangle_C = \sum_{g,k_1,k_2,\ldots=0}^{\infty} e^{-(2g+n-2)S_0} \left(\prod_i \frac{\lambda_i^{k_i}}{k_i!}\right) Z_{g,n,k}(\beta_1,\ldots,\beta_n;\alpha_1,\ldots,\alpha_k)$$

For example, in the case of the single boundary:

JT gravity with defects

 Main questions: 1) Can we perform the sum over defects explicitly to get new d.o.s? And 2) Is the theory dual to a matrix integral?

The answer to both questions is **yes**!

• Before, it is instructive to consider the following question. Can we define a theory where we include a finite number of defects? For example, only one.

$$\rho(E) \sim e^{S_0} \left[\sqrt{E} + \frac{\lambda}{\sqrt{E}} - \frac{\lambda^2}{2E^{3/2}} + \dots \right]$$

$$1 \text{ defect} \qquad 2 \text{ defect}$$

$$\rho(E) \sim e^{S_0} \sqrt{E - E_0}$$

(Including a single defect is analogous to the Maloney Witten partition function in 3D, and its ill-defined for similar reasons)

Genus zero WP volumes

• To compute the genus zero d.o.s. we need to sum over defects. This is done with the following formula for genus zero WP volumes

[Mertens, GJT 20] [Budd wip]

[Zograf 98]

$$V_{0,n}(b_1,\ldots,b_n) = \frac{1}{2} \left(-\frac{\partial}{\partial x}\right)^{n-3} \left[J_0\left(b_1\sqrt{u_{\rm JT}(x)}\right)\cdots J_0\left(b_n\sqrt{u_{\rm JT}(x)}\right)u'_{\rm JT}(x)\right]\Big|_{x\to 0}$$

Where

$$\frac{\sqrt{u_{\rm JT}}}{2\pi}I_1\left(2\pi\sqrt{u_{\rm JT}}\right) = x$$

Replace borders by defects $b \rightarrow 2\pi i \alpha$

Exact density of states

• Using the previous formula for WP volumes we can compute the disk d.o.s. as

The new edge of the spectrum depends implicitly on the fugacity through

$$\sqrt{E_0}I_1\left(2\pi\sqrt{E_0}\right) + 2\pi\sum_i\lambda_iI_0\left(2\pi\alpha_i\sqrt{E_0}\right) = 0$$

• We can check this matches the previous perturbative calculation.

Exact density of states

• Some numerical calculation of the density of states:

- The theory is perfectly fine for $\lambda < 0$. For $\lambda_c < \lambda$ the density of states can become negative! This critical value is finite.
- The interpretation and fate of the model beyond the critical fugacity is an open question.

Exact answer at g = 0 from Gravity

 Previous calculation can be generalized to any number of boundaries

$$Z_{\text{grav}}^{g=0}(\beta_1,\ldots,\beta_n) = \frac{e^{(2-n)S_0}}{2\pi^{n/2}} \frac{\sqrt{\beta_1\cdots\beta_n}}{\beta_1+\ldots+\beta_n} \left(\frac{\partial}{\partial x}\right)^{n-2} e^{-u(x)(\beta_1+\ldots+\beta_n)}\Big|_{x=0}$$

With "string equation": $\frac{\sqrt{u(x)}}{2\pi} I_1\left(2\pi\sqrt{u(x)}\right) + \lambda I_0\left(2\pi\alpha\sqrt{u(x)}\right) = x,$

• This is the answer for a hermitian matrix integral in the double scaling limit!

[Ambjorn, Jurkiewicz, Makeenko]

[Moore Seiberg Staudacher]

The String Equation

• A matrix integral in the double-scaling limit is specified by coefficients t_k through

$$\sum_{k} t_k u^k = x,$$

[Brezin, Kazakov] [Douglas Shenker] [Gross Migdal] [Banks Douglas Seiberg Shenker]

• Related to Disk (genus zero) density of states by:

$$\langle Z(\beta) \rangle_{g=0} = \frac{e^{S_0}}{\sqrt{4\pi\beta}} \int_0^\infty dx e^{-\beta u(x)}$$

- Higher-genus corrections determined by replacing $u^k \to R_k[u; \hbar = e^{-S_0}]$
- JT gravity turns on infinite couplings

$$\frac{\sqrt{u(x)}}{2\pi} I_1\left(2\pi\sqrt{u(x)}\right) + \lambda I_0\left(2\pi\alpha\sqrt{u(x)}\right) = x,$$

The String Equation

• A matrix integral in the double-scaling limit is specified by coefficients t_k through

$$\sum_{k} t_k u^k = x,$$

[Brezin, Kazakov] [Douglas Shenker] [Gross Migdal] [Banks Douglas Seiberg Shenker]

• Related to Disk (genus zero) density of states by:

$$\langle Z(\beta) \rangle_{g=0} = \frac{e^{S_0}}{\sqrt{4\pi\beta}} \int_0^\infty dx e^{-\beta u(x)}$$

- Higher-genus corrections determined by replacing $u^k \to R_k[u; \hbar = e^{-S_0}]$
- JT gravity turns on infinite couplings

$$\frac{\sqrt{u(x)}}{2\pi} I_1\left(2\pi\sqrt{u(x)}\right) + \lambda I_0\left(2\pi\alpha\sqrt{u(x)}\right) = x,$$

The String Equation

• A matrix integral in the double-scaling limit is specified by coefficients t_k through

$$\sum_{k} t_k u^k = x,$$

[Brezin, Kazakov] [Douglas Shenker] [Gross Migdal] [Banks Douglas Seiberg Shenker]

• Related to Disk (genus zero) density of states by:

$$\langle Z(\beta) \rangle_{g=0} = \frac{e^{S_0}}{\sqrt{4\pi\beta}} \int_0^\infty dx e^{-\beta u(x)}$$

- Higher-genus corrections determined by replacing $u^k \to R_k[u; \hbar = e^{-S_0}]$
- JT gravity turns on infinite couplings

$$\frac{\sqrt{u(x)}}{2\pi} I_1\left(2\pi\sqrt{u(x)}\right) + \lambda I_0\left(2\pi\alpha\sqrt{u(x)}\right) = x,$$

Topological Recursion: Deformation Theorem

• Eynard and Orantin showed that under some assumptions, if we have a solution of the topological recursion, the following is also a solution

$$W_{g,n}^{\text{new}}(z's) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \oint_{\Gamma} dy_1 f(y_1) \cdots \oint_{\Gamma} dy_k f(y_k) W_{g,n+k}^{\text{old}}(z's; y_1, \dots, y_k)$$

- For a choice of contour Γ and function f(y) this is precisely the sum over defects

(Important in construction of "Tau" and "Baker-Akhiezer" function, related to integrability)

- JT gravity + defects: Computed in terms of WP volumes and includes a sum over defects
- Matrix Integral: Computed in terms of the topological recursion of matrix models applied to the new density of

states $\rho_{\text{disk}} = \rho_{JT+def}(E)$

Eynard and Orantin "deformation theorem" guarantees both procedures agree!

JT gravity with a gas of defects (or pure dilaton-gravity) is holographically dual to a matrix integral, interpreted as an average over Hamiltonians

2D gravity as a Minimal String

The minimal string theory

• The world-sheet description is

Minimal String = (p, q) Minimal Model + Liouville + Ghosts

$$c_{p,q} + c_{\text{Liouville}} + c_{\text{ghosts}} = 0$$

- We focus on the one-matrix series (2,p) with p = 3,5,... Liouville coupling is $b = \sqrt{2/p}$ [Kazakov] [Staudacher]
- In the limit $p \to \infty$ the theory becomes JT gravity. New twist: interpret the matrix holographically as a dual random Hamiltonian.

The disk partition function

 From a worldsheet CFT perspective we need to compute the marked partition function for fixed boundary cosmological constant
 [FZZ, T]

$$Z(\mu_B)^{\mathsf{M}} \sim \mu^{\frac{1}{2b^2}} \cosh \frac{2\pi s}{b}, \qquad \mu_B(s) = \kappa \cosh 2\pi b s,$$

• Laplace transform to go to fixed length

$$Z(\ell) \equiv -i \int_{-i\infty}^{i\infty} d\mu_B e^{\mu_B \ell} Z(\mu_B)^{\mathrm{M}}$$

[Seiberg Shih]

• Final answer: Allows us to extract leading density of states of MM

$$Z(\ell) \sim \mu^{\frac{1}{2b^2} + \frac{1}{2}} \int_0^\infty ds \ e^{-\ell\kappa \cosh(2\pi bs)} \rho(s), \qquad \rho(s) \equiv \sinh 2\pi bs \sinh \frac{2\pi s}{b}.$$

Minimal String and JT gravity

[Okuyama Sakai] [Betzios Papadoulaki] [Johnson] [Mertens GJT]...

$$\langle Z(\beta) \rangle_{g=0} = \frac{e^{S_0}}{\sqrt{4\pi\beta}} \int_0^\infty dx e^{-\beta u(x)}$$

A sketch of a proof

- Describe the minimal string with Liouville field ϕ and the minimal model with a Coulomb gas (time-like Liouville) field χ
- Define a new metric $g = e^{2\rho}\hat{g}$ and dilaton Φ by $\phi = b^{-1}\rho + b\Phi$ [Seiberg Stanford] See also: [Kyono Okumura Yoshida 17] $\phi = b^{-1}\rho - b\Phi$
- The action becomes 2D dilaton-gravity:

$$I = -\frac{1}{2} \int d^2x \sqrt{g} \left(\Phi R + 2p \sinh p^{-1} \Phi \right)$$

• The limit $p \to \infty$ automatically gives JT gravity

Deformation of the Minimal String

	JT gravity + defects	Minimal String
String equation	$\frac{\sqrt{u}}{2\pi}I_1(2\pi\sqrt{u}) + \sum_i \lambda_i I_0(2\pi\alpha_i\sqrt{u}) = x$?

An example: One defect

- We can compute the partition function to leading order in the deformation
- From a worldsheet CFT perspective we need to compute $\mathcal{T} = \int_{\Sigma} d^2 z \, \mathcal{O}_{\mathrm{M}}(z, \bar{z}) e^{2\alpha \phi(z, \bar{z})}$ [FZZ, T]

$$\langle \mathcal{T}_{\alpha_M} \rangle_{\ell} = \ell \cdot \mathcal{T}$$

 $\langle \mathcal{T} \rangle \sim \int_0^\infty ds \ e^{-\ell \mu_B(s)} \cos 4\pi P s$

 The result for this bulk one-point function matches with the one defect amplitude in the disk (in the JT limit)

From tachyons to defects

[Usatyuk, Weng, GJT]

Consider the following perturbation of the minimal string

$$I = I_{(2,p)} + \sum_{n} \tau_n \int e^{2\alpha_n \phi} \mathcal{O}_{1,n}$$

• In the dilaton-gravity description this becomes

$$I = -\frac{1}{2} \int \sqrt{g} \left[\Phi R + 2U(\Phi) \right], \qquad \Rightarrow \qquad U(\Phi) = 2\mu \sinh\left(2\pi b^2 \Phi\right) + \sum_{n=1}^{m-1} \tau_n \ e^{-2\pi b^2 n \Phi},$$

From tachyons to defects

[Usatyuk, Weng, GJT]

Consider the following perturbation of the minimal string

$$I = I_{(2,p)} + \sum_{n} \tau_n \int e^{2\alpha_n \phi} \mathcal{O}_{1,n}$$

• In the dilaton-gravity description this becomes

$$I = -\frac{1}{2} \int \sqrt{g} \left[\Phi R + 2U(\Phi) \right], \qquad \Longrightarrow \qquad U(\Phi) = 2\mu \sinh\left(2\pi b^2 \Phi\right) + \sum_{n=1}^{m-1} \tau_n \ e^{-2\pi b^2 n \Phi},$$

Defect with angle

$$n = (1 - \alpha)/b^2$$

From tachyons to defects

[Usatyuk, Weng, GJT]

Consider the following perturbation of the minimal string

$$I = I_{(2,p)} + \sum_{n} \tau_n \int e^{2\alpha_n \phi} \mathcal{O}_{1,n}$$

• In the dilaton-gravity description this becomes

$$I = -\frac{1}{2} \int \sqrt{g} \left[\Phi R + 2U(\Phi) \right], \quad \Rightarrow \quad U(\Phi) = 2\mu \sinh\left(2\pi b^2 \Phi\right) + \sum_{n=1}^{m-1} \tau_n \ e^{-2\pi b^2 n \Phi},$$

Spectrum of defects: $\mathcal{T}_{1,m-1}$ $\mathcal{T}_{1,1}$ $n = (1 - \alpha)/b^2$ 0 $\frac{1}{p}$ 1 $p \to \infty \ (b \to 0)$ \bigvee \checkmark

• Deform the minimal string action by:

$$I = I_{(2,p)} + \sum_{n} \tau_n \int e^{2\alpha_n \phi} \mathcal{O}_{1,n}$$

• Can we find the string equation of this theory? This amounts to solving the theory exactly (assuming it is dual to matrix integral)

$$t_k(\tau_n,\mu)?$$

• Deform the minimal string action by:

$$I = I_{(2,p)} + \sum_{n} \tau_n \int e^{2\alpha_n \phi} \mathcal{O}_{1,n}$$

• Can we find the string equation of this theory? Yes!

• Deform the minimal string action by:

$$I = I_{(2,p)} + \sum_{n} \tau_n \int e^{2\alpha_n \phi} \mathcal{O}_{1,n}$$

- Can we find the string equation of this theory? Yes!
- Bootstrap approach: Correlators in sphere should satisfy fusion rules of minimal model CFT

[Moore Seiberg Staudacher 91] [Belavin Zamolodchikov 08]

• Deform the minimal string action by:

$$I = I_{(2,p)} + \sum_{n} \tau_n \int e^{2\alpha_n \phi} \mathcal{O}_{1,n}$$

- Can we find the string equation of this theory? Yes!
- Bootstrap approach: Correlators in sphere should satisfy fusion rules of minimal model CFT [Moore Seiberg Staudacher 91] [Belavin Zamolodchikov 08]
- Exact answer for "sharp" deformations:

$$\mathcal{P}_0(u) + \sum_n \tau_n P_{\frac{p-1}{2}-n} \left(1 + \frac{8\pi^2}{p^2}u\right) = x$$

Undeformed minimal string

Т

Deformation of the Minimal String

[Usatyuk, Weng, GJT]

• We can check that in the large p limit this reduces to JT coupled to sharp defects:

JT gravity + defectsMinimal StringString equation
$$\frac{\sqrt{u}}{2\pi}I_1(2\pi\sqrt{u}) + \sum_i \lambda_i I_0(2\pi\alpha_i\sqrt{u}) = x$$

 $\leftarrow p \rightarrow \infty$ $\mathcal{P}_0(u) + \sum_n \tau_n P_{\frac{p-1}{2}-n} \left(1 + \frac{8\pi^2}{p^2}u\right) = x$

 Belavin and Zamolodchikov also conjectured a solution for deformations with small n, looks a little uglier:

Undeformed
$$\longrightarrow \frac{p}{16\pi^2} \left(P_m \left(\frac{u_{\rm MS}}{\kappa} \right) - P_{m-2} \left(\frac{u_{\rm MS}}{\kappa} \right) \right)$$

 $+ \sum_{L=1}^{\infty} \sum_{n_1,\dots,n_L=1}^{m-1} \frac{1}{L!} \prod_{i=1}^L \lambda_{n_i} \left(\frac{16\pi^2}{p^2} \right)^{L-1} P_{m-1-\sum_{i=1}^L n_i}^{(L-1)} \left(\frac{u_{\rm MS}}{\kappa} \right) = x,$

Notation:
$$p = 2m - 1$$
, $\kappa \propto \sqrt{\mu}$, $u_{MS} = \kappa \left(1 + \frac{8\pi^2}{p^2}u\right)$ and $\lambda \propto \tau$

- When n is large, only L = 1 remains, and we recover sharp defects, since we have a constrain

$$\sum_{i=1}^{L} n_i < m-1$$

 Belavin and Zamolodchikov also conjectured a solution for deformations with small n, looks a little uglier:

Undeformed
$$\longrightarrow \frac{p}{16\pi^2} \left(P_m \left(\frac{u_{\rm MS}}{\kappa} \right) - P_{m-2} \left(\frac{u_{\rm MS}}{\kappa} \right) \right) + \sum_{L=1}^{\infty} \sum_{n_1,\dots,n_L=1}^{m-1} \frac{1}{L!} \prod_{i=1}^L \lambda_{n_i} \left(\frac{16\pi^2}{p^2} \right)^{L-1} P_{m-1-\sum_{i=1}^L n_i}^{(L-1)} \left(\frac{u_{\rm MS}}{\kappa} \right) = x,$$

Notation:
$$p = 2m - 1$$
, $\kappa \propto \sqrt{\mu}$, $u_{MS} = \kappa \left(1 + \frac{8\pi^2}{p^2}u\right)$ and $\lambda \propto \tau$

- When *n* is large, only L = 1 remains, and we recover sharp defects
- We can take the large p limit of this formula and obtain a solution to 2D dilaton-gravity with generic defects!
- This works when the cut-and-glue prescription of SSS cannot be implemented

Example: One generic defect

[Usatyuk, Weng, GJT]

String equation from the minimal string

$$\frac{\sqrt{u}}{2\pi}I_1(2\pi\sqrt{u}) + \sum_{L=1}^{\lfloor\frac{1}{1-\alpha}\rfloor} \frac{\lambda^L}{L!} \left(\frac{2\pi(1-L(1-\alpha))}{\sqrt{u}}\right)^{L-1} I_{L-1} \left(2\pi(1-L(1-\alpha))\sqrt{u}\right) = x$$

• Outside the SSS framework (no geodesics) but still dual to matrix integral

• Includes merging *L* defects $\alpha_L = 1 - L(1 - \alpha)$.

• Non-trivial check: gives back JT when $\alpha \rightarrow 1$

Example: One generic defect

[Usatyuk, Weng, GJT]

• String equation

$$\frac{\sqrt{u}}{2\pi}I_1(2\pi\sqrt{u}) + \sum_{L=1}^{\lfloor\frac{1}{1-\alpha}\rfloor} \frac{\lambda^L}{L!} \left(\frac{2\pi(1-L(1-\alpha))}{\sqrt{u}}\right)^{L-1} I_{L-1} \left(2\pi(1-L(1-\alpha))\sqrt{u}\right) = x$$

• A check: when we take $\alpha = 1$ we should recover JT

$$\frac{\sqrt{u}}{2\pi}I_1(2\pi\sqrt{u}) + \sum_{L=1}^{\infty} \frac{\lambda^L}{L!} \left(\frac{\sqrt{u}}{2\pi}\right)^{1-L} I_{L-1}(2\pi\sqrt{u}) = \frac{\sqrt{u+2\lambda}}{2\pi}I_1(2\pi\sqrt{u+2\lambda})$$
Gives back JT with a shift of energy

Solution of dilaton-gravity on disk

[Usatyuk, Weng, GJT]

• General solution for density of states

[Budd, wip]

$$\rho(E) = \frac{e^{S_0}}{2\pi} \int_{\mathcal{C}} \frac{dy}{2\pi i} e^{2\pi y} \tanh^{-1} \left(\sqrt{\frac{E - E_0}{y^2 - 2W(y) - E_0}} \right)$$

With defect potential:

$$W(y) \equiv \sum_{i} \lambda_{i} e^{-2\pi(1-\alpha_{i})y}$$

• Using defects with $\alpha \sim 1$ we can model more general dilaton potentials

The exact formula matches with semiclassical limit

Solution of dilaton-gravity on disk

[Usatyuk, Weng, GJT]

• General solution for density of states

[Budd, wip]

$$\rho(E) = \frac{e^{S_0}}{2\pi} \int_{\mathcal{C}} \frac{dy}{2\pi i} e^{2\pi y} \tanh^{-1} \left(\sqrt{\frac{E - E_0}{y^2 - 2W(y) - E_0}} \right)$$

With defect potential:

$$W(y) \equiv \sum_{i} \lambda_{i} e^{-2\pi(1-\alpha_{i})y}$$

• Using defects with $\alpha \sim 1$ we can model more general dilaton potentials

The exact formula matches with semiclassical limit

(There is a puzzle I don't have time to mention)

Conclusions

- We solved pure 2D dilaton-gravity
- We argued that all these theories are dual to a matrix integral, in a holographic way
- Connection to minimal string
- Open Questions:
 - Dual of 2D dilaton-gravity with matter?
 - Finite cut-off AdS/ relation with $T\bar{T}$? [Iliesiu Kruthoff Verlinde GJT] [Stanford Yang]
 - MM of JT from "triangulation" perspective? [Kazakov Staudacher Wynter]
 - Relation between minimal string and SYK? [Berkooz Isachenkov Narovlansky Torrents]
 - We worked in AdS, what about flat space and dS?