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Plan of the talk

» Part 1: Pure Jackiw-Teitelboim gravity [Saad Shenker Stanford 19]

> Part 2: 2D dilaton-gravity [maxfield, GJT 20] [Witten 20]

» Part 3. Connection to the minimal string [Mertens, GJT 20]

[Usatyuk, Weng, GJT 20]



Jackiw-Teitelboim Gravity

Simple two dimensional theory of dilaton-gravity
S0 1
IJT: ——/R— —/qb(R—l—Q)—I—IGHY
4 2

Asymptotically AdS, boundary conditions
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G|bdy = — Llpay = -

e — 0
Theory reduces to a boundary mode

Broken conformal symmetry (ajneiri. Polchinski 14] [Jensen 16]
[Maldacena,Stanford,Yang16] [Englesoy, Mertens Verlinde 16]...



* Final answer for disk partition function  Zg;q (8) = e”0

[Altland, Bagrets, Kamenev 16] [Stanford, Witten 17]
[Mertens, GJT, Verlinde 17]

e Density of states:
p(E) ~ eSoeVE
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e Final answer for disk partition function
[Altland, Bagrets, Kamenev 16] [Stanford, Witten 17]

[Mertens, GJT, Verlinde 17]

e Density of states:

piT(E) =

€

So

472

sinh (27n/27E)

Zaisk(B) = €™

p(E)

~ e20¢

 Problem: The spectrum is continuous! SFF decays in time forever, matter
correlators, etc...

e Saad-Shenker-Stanford: This can be solved by allowing to sum over

topologies



Sum over topologies

e In 2D topologies are classified by genus. We will also include the
possibility of having any number of boundaries

Zueae(Bs -1 B) = / DyD e Lorlod




Summary of Steps

Full gravitational path integral with n boundaries f; and genus g
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Summary of Steps

Full gravitational path integral with n boundaries f; and genus g

Integrate out the dilaton

v

Integrate over hyperbolic surfaces with R +2 = 0
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Summary of Steps

Full gravitational path integral with n boundaries f; and genus g

Integrate out the dilaton

\4

Integrate over hyperbolic surfaces with R +2 = 0

|dentify geodesics homologous to boundaries

v

Compute partition function of
“trumpet” and bulk with geodesic Z(61)
boundaries

v

“Tree level exact”: glue with Weil-Petersson measure 2(Bs)



Ingredients

e Trumpet: - Integrate out dilaton. “b” dependent
boundary Schwarzian mode. Final

b ﬁ answer.

Yo _ab?
Ztrumpet(ﬁa b) — ——e 27

e Hyperbolic surfaces with geodesic boundaries:

b2
() D —  Voa(by, ... by)

b3

= Weil-Petersson volumes, computed using Mirzakhani recursion



Sum over topologies

* Final answer obtained by gluing:

Zg,n(ﬁla SR 7671) — / bldblztrumpet (517 bl) T / bndantrumpet (Bna bn)Vg,n(bla B bn)
0 0




JT gravity and matrices

e SSS realized that the theory is equivalent, in a holographic sense, to a
matrix integral of size L X L, with L ~ e such that

Zgray(B1, -+ -, Bn) = /dH P(H) Tr(e ") . Tr (e Pri)
A A

QM partition function

Probability distribution over Hamiltonians:

P(H) _ rm(ven) I/
T >

E

e Based on comparing Mirzakhani’s recursion for Weil-Petersson volumes
with matrix model loop equations



©.@,

<Z(61) cee Z(ﬁn»conn. — Z 6_(29_2+n)5 Zg,n(ﬁl, <. @
g=0

e JT gravity: Computed in terms of WP * Matrix Integral: Computed in terms of
volumes. They satisfy a recursion of the topological recursion of matrix
their own found by Mirzakhani. models with pgiq = p;7(E)

\ /

Eynard and Orantin proved that both recursions
are identical (up to an integral transform)

SSS: This implies that pure JT gravity is holographically
dual to a matrix integral, interpreted as an average over
Hamiltonians



The Factorization Puzzle

+ Smoking gun of holography with disorder: .., witen oo .

51 Ba

Zgrav(ﬁla 52) 7& Zgrav(ﬁl)Zgrav(BQ)

e A possible answer is to add “baby universe” Hilbert space.
[Coleman; Giddings Strominger 88]

e This does not quite work when computing entanglement entropies: an
average quantum system is not necessarily a quantum system

[Giddings GJT 20]



JT gravity with a gas of defects

e Motivations for doing this:

1. Generalize the dual matrix integral to general dilaton gravity theories

2. Application to 3D gravity {\'\//'Vi?fielgé]GJT 20
Iren

e Repeat the same procedure but allow the presence of dynamical defects.
Sum over any number of them and any position.

¢ Defect fugacity: A

¢ Deficit angle: 8 = 2z(1 — a)



2D dilaton-gravity

. A defect is equivalent to inserting AJ\/ge‘z’”(l‘“)‘ﬁ in the JT path integral.

[Mertens, GJT 19]

e Then JT gravity with a gas of defects is equivalent to the following
modification of the action

With potential

e This covers a large class of two-derivative pure dilaton-gravity.



Cut and glue v2

For defecit angles that satisfy o < 1/2 there is always a geodesic homologous to the
holographic boundary. Therefore we can still use trumpets to glue. For example

Z(52)
Z (1)

\ WP volume over hyperbolic surfaces

with 7 geodesic boundaries and k
cone points

------

‘/g,n,k<bla Ceey bn; a1, ..., Oék) = VOI (Mn,gjg)

Z(B3) Replace borders by defects b — 2mia

[Tan Wong Zhang] [Do Norbury]



Cut and glue v2

The fact that we restrict to a < 1/2 is important. Consider for example the following two
situations

a<1/2 12<a<1

Geodesic No geodesic!

|

SSS recipe cannot be applied. We will
use a different method later



Now the calculation becomes the same as in JT gravity but with a double expansion.
We can also generalize to several flavors of defects:

00 k.
<Z(61)Z(5n)>c _ Z 6—(29—1—7%—2)50 ( 21'> Zg,n,k(ﬁl,...,Bn;ozl,...,ozk)

g,k1,k2,...=0

For example, in the case of the single boundary:

k=1 k=72

q-<
®<O =1

{Z(p)) =



JT gravity with defects

 Main questions: 1) Can we perform the sum over defects explicitly to get new d.o.s?
And 2) Is the theory dual to a matrix integral?

The answer to both questions is yes!

* Before, it is instructive to consider the following question. Can we define a theory
where we include a finite number of defects? For example, only one.

A A2
So .
p(E) ~e \/E+\ﬁ 2E3/2+"'
No, we have to sum over defects t t

1 defect 2 defect
p(E) ~ e\/E — E,

(Including a single defect is analogous to the Maloney Witten partition function in 3D,
and its ill-defined for similar reasons)



Genus zero WP volumes

 To compute the genus zero d.o.s. we need to sum over defects. This is done with the

following formula for genus zero WP volumes
[Mertens, GJT 20] [Budd wip]

Von(brs - bn) = % <—£E)n3 o (b1v/ue(@)) -+~ o (baure(@)) ()]

Where

\/mll (27‘('\/%) — X

2T [Zograf 98]

Replace borders by defects b — 2rxia



Exact density of states

* Using the previous formula for WP volumes we can compute the disk d.o.s. as

e £ du

<10(E)>g=0 47_‘_ 5 m

- Q- <&

The new edge of the spectrum depends implicitly on the fugacity through

(IO (2mv/u) +Z>\ 2”0‘7’11 (2rav/u ))

v/ Eoly (27‘(‘ EO) + 27‘(’2)\@']0 (27‘(‘0@\/ EO) =0

* We can check this matches the previous perturbative calculation.



Exact density of states

e Some numerical calculation of the density of states:

0.35F
0.30F
0.25F
g 020}
< 0.5}

0.10F

ool /_\
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A <0 0<A<A, A, < A

0.05¢

» The theory is perfectly fine for A < 0. For 4. < A the density of states can become
negative! This critical value is finite.

* The interpretation and fate of the model beyond the critical fugacity is an open
question.



Exact answer at g = 0 from
Gravity

e Previous calculation can be generalized to any number of
boundaries

(2—n)So n—2
Z90(Br, .. Ba) = © VBB (a) @) (Bt )

grav /2 B14+ ...+ 8, \Ox x=0
With “string equation”: ;SI) I (zm/u(a;)> YA (27T04\/u(x)> = 1,

e This is the answer for a hermitian matrix integral in the double
scaling limit!

[Ambjorn, Jurkiewicz, Makeenko]

[Moore Seiberg Staudacher]



The

String Equation

A matrix integral in the double-scaling limit is specified by coefficients 7, through

[Brezin, Kazakov] [Douglas Shenker] [Gross Migdal]
E tkuk =, [Banks Douglas Seiberg Shenker]
k

Related to Disk (genus zero) density of states by:

(Z(B))g=0 =

650 / J —Bu(z)
€TE
Var B Jo

Higher-genus corrections determined by replacing uk - R [u;n = e 0]

JT gravity turns on infinite couplings

2T

I (27‘(’\/@) + Al (2#@@) =,
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The

String Equation

A matrix integral in the double-scaling limit is specified by coefficients 7, through

[Brezin, Kazakov] [Douglas Shenker] [Gross Migdal]
E tkuk =, [Banks Douglas Seiberg Shenker]
k

Related to Disk (genus zero) density of states by:

(Z(B))g=0 =

650 / J —Bu(z)
€TE
Var B Jo

Higher-genus corrections determined by replacing uk - R [u;n = e 0]

JT gravity turns on infinite couplings




Topological Recursion:
Deformation Theorem

e Eynard and Orantin showed that under some assumptions, if we have a
solution of the topological recursion, the following is also a solution

new )\k (@)
W (2's) Z ]{d?ﬂf Y1) ]{dykf(yk)ngﬁM(z S} YLy -+ Yk)

e For a choice of contour I and function f(y) this is precisely the sum over
defects

(Important in construction of “Tau” and “Baker-Akhiezer” function, related to
integrability)



OO

—2 2 S
6’”/ conn — (29=2+n) gn 617'- aﬁn

/O \
e Matrix Integral: Computed in terms

of the topological recursion of matrix
models applied to the new density of

states Pisk = Prryder(E)

\ /

Eynard and Orantin “deformation theorem” guarantees
both procedures agree!

e JT gravity + defects: Computed in
terms of WP volumes and includes a
sum over defects

JT gravity with a gas of defects (or pure dilaton-gravity) is
holographically dual to a matrix integral, interpreted as an
average over Hamiltonians



2D gravity as a Minimal String



The minimal string theory

 The world-sheet description is

Minimal String = (p, g) Minimal Model + Liouville + Ghosts

Cp,q + CLiouville + Cghosts =0

e We focus on the one-matrix series (2,p) with p = 3,5,... Liouville coupling is

b =+/2/ P [Kazakov] [Staudacher]

e Inthe limit p — oo the theory becomes JT gravity. New twist: interpret the
matrix holographically as a dual random Hamiltonian.

[Saad Shenker Stanford]



The disk partition function

From a worldsheet CFT perspective we need to compute the marked

partition function for fixed boundary cosmological constant

[FZZ, T]
) Irs [Seiberg Shih]
Z(,LLB)M ~ MW cosh 77 ,LLB(S) — K cosh 27TbS,
Laplace transform to go to fixed length Z(0) = —i /m duge® Z (up)™

Rotate contour

Final answer: Allows us to extract leading density of states of MM

Z(g) -~ M#—F%/ ds e—ﬁmcosh(%rbs)p(s)’ P(S)
0

2
— sinh 27bs sinh %S



Minimal String and JT gravity

JT gravity

Minimal String

DOS

String equation

[Okuyama Sakai] [Betzios
Papadoulaki] [Johnson]
[Mertens GJT]...

1
12 sinh (QW\/E)

T

\2/—7?]1(27\/5) =

(Z(B))g=0 =

\/H

1
42

2
—— sinh ]Zarccosh 1+ 8iE
2 p?

1—p 1 4772
“F b —I—p72 T u) =g
2 2 2 p?
dxe_ﬁu @)



A sketch of a proof

e Describe the minimal string with Liouville field ¢ and the minimal model
with a Coulomb gas (time-like Liouville) field y

e Define a new metric g = e%*’$ and dilaton @ by 6= bp+ bd

[Seiberg Stanford] Yy =b1p—bd
See also: [Kyono Okumura Yoshida 17]

e The action becomes 2D dilaton-gravity:

1
I = -5 /de\/g (@R—I— 2psinhp_1<I>)

e Thelimit p — oo automatically gives JT gravity



Deformation of the Minimal String

JT gravity + defects Minimal String

o

String equation \/ah(%\/ﬂ) + Z Ailo(2mai/u) = P




An example: One defect

[Mertens GJT]

e \We can compute the partition function to leading order in the deformation

e From a worldsheet CFT perspective we need to compute 7 = / d>z Oy (z, 2)e?29=2)
b

[FZZ, T]

<7;M> = ¢ o0
e (T) ~ / ds e*B() cos 47 Ps
0

e The result for this bulk one-point function matches with the one defect
amplitude in the disk (in the JT limit)



From tachyons to defects

[Usatyuk, Weng, GJT]

e Consider the following perturbation of the minimal string

=1y + ZTR/€2an¢Ol,n

e In the dilaton-gravity description this becomes

I = —5/\/§[CI>R—|— 2U ()], == U(®) = 2usinh (27b°®) + Z T, € 2T,



From tachyons to defects

[Usatyuk, Weng, GJT]

e Consider the following perturbation of the minimal string

=1y + ZTN/€2an¢Ol,n

e In the dilaton-gravity description this becomes

m—

I=—3 / VI [®R +2U(D)], =  U(®) = 2usinh (270*®) + ) | 7, e,

n—

Defect with angle

n=(1-a)/b’



From tachyons to defects

[Usatyuk, Weng, GJT]

e Consider the following perturbation of the minimal string

=1y + ZTN/€2an¢Ol,n

e In the dilaton-gravity description this becomes
1 2
1=~ / VIPR+2U(®)], =  U(®P)=2usinh (27b?®) + Z T, e 2mne,

e Spectrum of defects: Tim—1 Tia

n=(1-a)/b’ 0 N 1@
p

pme=0 NN



Deformed Minimal String: Exact
Solution

* Deform the minimal string actionby:  j _ 7, 4 377 /ezanaﬁol
P n T
n

e Can we find the string equation of this theory? This amounts to solving the
theory exactly (assuming it is dual to matrix integral)

tk(Tm /’t) s



Deformed Minimal String: Exact
Solution

e Deform the minimal string action by: 7 _ Lo + 37 / 20mb0),
n

e Can we find the string equation of this theory? Yes!



Deformed Minimal String: Exact
Solution

e Deform the minimal string action by: 7 _ Lo + 37 / 20mb0),
n

e Can we find the string equation of this theory? Yes!

e Bootstrap approach: Correlators in sphere should satisfy fusion rules of
minimal model CFT

[Moore Seiberg Staudacher 91] [Belavin Zamolodchikov 08]



Deformed Minimal String: Exact
Solution

Deform the minimal string action by:  j _ 7, = S / 20md ),
n

Can we find the string equation of this theory? Yes!

Bootstrap approach: Correlators in sphere should satisfy fusion rules of
minimal model CFT [Moore Seiberg Staudacher 91] [Belavin Zamolodchikov 08]

Exact answer for “sharp” deformations:

872
PO(U) + ZTanT_l—n (1 -+ p2u) —
* n

Undeformed minimal string




Deformation of the Minimal String

[Usatyuk, Weng, GJT]

e \We can check that in the large p limit this reduces to JT coupled to sharp
defects:

JT gravity + defects Minimal String

. . 872
String equation \2/—311(%\/5) + EZ: Ailo(2maiv/u) = x Po(u) + Z TnPpa_, (1 + p%u) =2

- Valid in the range: it T

a<1/2



e Belavin and Zamolodchikov also conjectured a solution for deformations
with small n, looks a little uglier:

Undeformed — 1(5# (P”'” (%> ~ b (%))

00 m—1 1 167'('2 L-1 ( ) Un s
L L—1 M
P X s (Ur) P (M) =

Q 2
Notation: p =2m — 1, k « ,Lt,uMS=K<1+i2u> and 1 «x 7
P

- When n is large, only L = 1 remains, and we recover sharp defects, since
we have a constrain

L

an-<m—1

=1



e Belavin and Zamolodchikov also conjectured a solution for deformations
with small n, looks a little uglier:

Undeformed — 1é97r2 (P”'” (%> ~ b (%))

it iy 1 167‘(‘2 L= ( ) UMS
L L—1 M
P X s (Ur) P (M) =

Q 2
Notation: p =2m — 1, k « ,Lt,uMS=K<1+i2u> and 1 «x 7
P

e« When n is large, only L = 1 remains, and we recover sharp defects

= \\We can take the large p limit of this formula and obtain a solution to 2D
dilaton-gravity with generic defects!

= This works when the cut-and-glue prescription of SSS cannot be
implemented



Example: One generic defect

[Usatyuk, Weng, GJT]

e String equation from the minimal string

Ferd

\2/—3]1(277\/6) + Z
L=1

)\L

21(1 — L(1 —

L!

(

\/ﬂ

L1
))> In—1 (2n(1 = L(1 — a))Vu)

=X

e Qutside the SSS framework (no geodesics) but still dual to matrix integral

e Includes merging L defects a; = 1 — L(1 — a).

e Non-trivial check: gives back JT when a — 1




Example: One generic defect

[Usatyuk, Weng, GJT]
e String equation

el

\2/—3]1(277\/6) + Z
L=1

L—1
(2”(1 — L - O‘))> I-1 (27(1 = L(1 — ))Vu) =z

A
L Ju

e A check: when we take @ = 1 we should recover JT

0 N\, ” 1-L U
venenva+ Y 5 (V) eaenvi) =R R e o
L=1

27
Gives back JT with a shift
of energy



Solution of dilaton-gravity on disk

[Usatyuk, Weng, GJT]

 General solution for density of states [Budd, wip]

So

€ dy o —1 — =0
E)=5" [ 2 2 tann Lok
A(E) 27 CQWie an (\/yQQW(y)EO

With defect potential:

Wi(y) = Z Nje 2ri—ai)y

e Using defects with & ~ 1 we can model
more general dilaton potentials

The exact formula matches with
semiclassical limit




Solution of dilaton-gravity on disk

[Usatyuk, Weng, GJT]

 General solution for density of states [Budd, wip]

So

€ dy o —1 — =0
E)=5" [ 2 2 tann Lok
A(E) 27 sz,e an (\/yQQW(y)EO

With defect potential:

Wi(y) = Z Nje 2ri—ai)y

e Using defects with & ~ 1 we can model
more general dilaton potentials

The exact formula matches with
semiclassical limit

(There is a puzzle | don’t have time to mention)



Conclusions



We solved pure 2D dilaton-gravity

We argued that all these theories are dual to a matrix integral, in a holographic
way

Connection to minimal string

Open Questions:

Dual of 2D dilaton-gravity with matter?

Finite cut-off AdS/ relation with TT? [lliesiu Kruthoff Verlinde GJT] [Stanford Yang]

MM of JT from “triangulation” perspective? [Kazakov Staudacher Wynter]

Relation between minimal string and SYK? [Berkooz Isachenkov Narovlansky Torrents]

We worked in AdS, what about flat space and dS?



