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Jackiw-Teitelboim Gravity
• Simple two dimensional theory of dilaton-gravity

• Asymptotically  boundary conditions AdS2

• Theory reduces to a boundary mode
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[Almheiri, Polchinski 14] [Jensen 16] 
[Maldacena,Stanford,Yang16] [Englesoy, Mertens Verlinde 16]…

The matrix integral dual of JT gravity

∫ dH e−L Tr V(H) (Tr e−β1H)⋯(Tr e−βnH) ∫n−boundary
#g2#ϕ e−IJT[g2,ϕ]

All other amplitudes: 
Topological recursion

Disc:
ZMatrix

g=0,n=1(β)

Matrix integral = random Hamiltonian of JT boundary theory

Characterised by leading 
order partition function

Mirzakhani’s recursionZMatrix
g,n (β)

Z0,1(β) = e
π2
β

16πβ3

A correspondence to all orders in genus expansion

- Broken conformal symmetry
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• Final answer for disk partition function 

• Density of states:
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• Final answer for disk partition function 

• Density of states:

• Problem: The spectrum is continuous! SFF decays in time forever, matter 
correlators, etc…
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• Final answer for disk partition function 

• Density of states:

• Problem: The spectrum is continuous! SFF decays in time forever, matter 
correlators, etc…
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• Saad-Shenker-Stanford: This can be solved by allowing to sum over 
topologies

[Altland, Bagrets, Kamenev 16] [Stanford, Witten 17] 
[Mertens, GJT, Verlinde 17]



Sum over topologies
• In 2D topologies are classified by genus. We will also include the 

possibility of having any number of boundaries
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Full gravitational path integral with  boundaries  and genus n βi g

Summary of Steps
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Full gravitational path integral with  boundaries  and genus n βi g
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Ingredients
of the boundary (governed by the Schwarzian theory), and over the finite-dimensional moduli
space of surface with a given topology. More explicitly, with the exceptions of the n = 1,
g = 0 amplitude with one boundary and disc topology, every constant curvature surface with
n asymptotic boundaries has a unique geodesic homotopic to each boundary. We can cut the
surface along these geodesics, which we take to have lengths b1, . . . , bn. We then have cut the
spacetime into a genus g surface with n geodesic boundaries of lengths b1, . . . , bn (the ‘convex
core’), and n ‘trumpets’ with one geodesic boundary and one asymptotic boundary. This split
is shown for the g = 1, n = 1 case in the bottom diagram of figure 1, where the dotted line
corresponds to the geodesic of length b. On the asymptotic boundaries, we must integrate
over all ways in which the boundary conditions of renormalized length � can be obeyed on
the trumpet geometry, with the result

Ztrumpet(�, b) =

r
�

2⇡�
e�

�
2

b2

� . (3.6)

Next, we must integrate over all constant curvature surfaces of genus g with n geodesic bound-
aries of the specified lengths. This is a compact space of dimension 2n+6(g� 1), and it turns
out that the correct measure on this space is provided by the WP symplectic form. The result
of the integral is thus the WP volume, denoted Vg,n(b1, . . . , bn). Finally, we must integrate
over the lengths b of the geodesics separating the trumpets from the convex core with the
correct measure bdb. Putting these pieces together, we have

Zg,n,k=0(�1, . . . , �n) =

Z 1

0

b1db1Ztrumpet(�1, b1) · · ·

Z 1

0

bndbnZtrumpet(�n, bn)Vg,n(b1, . . . , bn).

(3.7)
There are two exceptional cases for which this formula does not apply. The first is the

n = 1, g = 0 disc, for which we have

Zg=0,n=1,k=0(�) =

s
�3

2⇡�3
e2⇡

2 �
� . (3.8)

The second is the n = 2, g = 0 double trumpet, which follows from the above if we set
V0,2(b1, b2) =

1

2
�(b2

1
� b2

2
) = 1

b1
�(b1 � b2), with the factor of 1

b
informally understood as coming

from the residual gauge symmetry of rotating both boundaries along the length b of the
separating geodesic:

Zg=0,n=2,k=0(�1, �2) =

Z 1

0

bdb Ztrumpet(�1, b)Ztrumpet(�2, b) =

p
�1�2

2⇡(�1 + �2)
. (3.9)

The expression (3.7) is only as useful as our knowledge of the volumes Vg,n. Fortunately,
they can be e�ciently computed due to a recursion relation found by Mirzakhani [32]. In
particular, the volumes are even polynomials in b1, . . . , bn, with degree equal to the dimension
of moduli space 2n+ 6(g � 1).

This concludes our brief review of [7], giving the expansion of the amplitudes without
defects. It is now a rather simple matter to include the defects, using a result on the volumes
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Solving JT gravity
[Saad,Shenker,Stanford]
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b β = Ztrumpet(β, b)

b

b = Vg=1,n=1(b)
Zg=1,n=1(β) :

Weil-Petersson 
volume

 Weil-Petersson volumes, computed using Mirzakhani recursion ⇒

- Integrate out dilaton. “ ” dependent 
boundary Schwarzian mode. Final 
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Sum over topologies
• Final answer obtained by gluing:
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µSO(3)

�
⌧̇ ]2 (12)

⌧(u) 2 Di↵(S1
), ei✓(u) 2 U(1) h(u) 2 SO(3) (13)

SL(2)⇥ U(1)⇥ SO(3) (14)

EU(1) ⇠ K�1, ESO(3) ⇠ 1/r30 (15)

1

ds2 =
dr2 + r2d✓2

(1� r2)2
(1)

IJT = �

Z �

0
d⌧

⇢
tan

⇡f

�
, ⌧

�
(2)

r = 1� "✓0 + . . . (3)

✓
r(⌧), ✓ =

2⇡

�
f(⌧)

◆
(4)

hZ(�1) . . . Z(�n)i =
Z

DgD� e�IJT[g,�] (5)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

L�(2g�2+n)Zg,n(�1, . . . ,�n) (6)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

e�(2g�2+n)S0Zg,n(�1, . . . ,�n) (7)

=

p
�1�2

�1 + �2
(8)

hZ(�1)Z(�2)i (9)

⇢(E) = eS0


1

4⇡2
sinh

�
2⇡

p
E
�
+

�

2⇡
p
E

cosh
�
2⇡↵

p
E
��

,

⇠ eS0

2⇡

p
E +

�p
E

�
(10)

⇢(E) ⇠ eS0

p
E � E0 ⇠ eS0

p
E +

�p
E

� �2

2E3/2
+ . . .

�
(11)

X

j

tju
j
= �x (12)

⇢disk(E) =
eS0

2⇡

Z
(13)

V0,n(b1, . . . , bn) =
1

2

✓
� @

@x

◆n�3 h
J0

⇣
b1
p

uJT(x)
⌘
· · · J0

⇣
bn
p

uJT(x)
⌘
u0JT(x)

i ���
x!0

(14)

1

ds2 =
dr2 + r2d✓2

(1� r2)2
(1)

IJT = �

Z �

0
d⌧

⇢
tan

⇡f

�
, ⌧

�
(2)

r = 1� "✓0 + . . . (3)

✓
r(⌧), ✓ =

2⇡

�
f(⌧)

◆
(4)

hZ(�1) . . . Z(�n)i =
Z

DgD� e�IJT[g,�] (5)

Z(�2) Z(�3) b1 b2 b3 (6)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

L�(2g�2+n)Zg,n(�1, . . . ,�n) (7)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

e�(2g�2+n)S0Zg,n(�1, . . . ,�n) (8)

=

p
�1�2

�1 + �2
(9)

hZ(�1)Z(�2)i (10)

⇢(E) = eS0


1

4⇡2
sinh

�
2⇡

p
E
�
+

�

2⇡
p
E

cosh
�
2⇡↵

p
E
��

,

⇠ eS0

2⇡

p
E +

�p
E

�
(11)

⇢(E) ⇠ eS0

p
E � E0 ⇠ eS0

p
E +

�p
E

� �2

2E3/2
+ . . .

�
(12)

X

j

tju
j
= �x (13)

⇢disk(E) =
eS0

2⇡

Z
(14)

1

ds2 =
dr2 + r2d✓2

(1� r2)2
(1)

IJT = �

Z �

0
d⌧

⇢
tan

⇡f

�
, ⌧

�
(2)

r = 1� "✓0 + . . . (3)

✓
r(⌧), ✓ =

2⇡

�
f(⌧)

◆
(4)

hZ(�1) . . . Z(�n)i =
Z

DgD� e�IJT[g,�] (5)

Z(�2) Z(�3) b1 b2 b3 (6)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

L�(2g�2+n)Zg,n(�1, . . . ,�n) (7)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

e�(2g�2+n)S0Zg,n(�1, . . . ,�n) (8)

=

p
�1�2

�1 + �2
(9)

hZ(�1)Z(�2)i (10)

⇢(E) = eS0


1

4⇡2
sinh

�
2⇡

p
E
�
+

�

2⇡
p
E

cosh
�
2⇡↵

p
E
��

,

⇠ eS0

2⇡

p
E +

�p
E

�
(11)

⇢(E) ⇠ eS0

p
E � E0 ⇠ eS0

p
E +

�p
E

� �2

2E3/2
+ . . .

�
(12)

X

j

tju
j
= �x (13)

⇢disk(E) =
eS0

2⇡

Z
(14)

1

ds2 =
dr2 + r2d✓2

(1� r2)2
(1)

IJT = �

Z �

0
d⌧

⇢
tan

⇡f

�
, ⌧

�
(2)

r = 1� "✓0 + . . . (3)

✓
r(⌧), ✓ =

2⇡

�
f(⌧)

◆
(4)

hZ(�1) . . . Z(�n)i =
Z

DgD� e�IJT[g,�] (5)

Z(�2) Z(�3) b1 b2 b3 (6)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

L�(2g�2+n)Zg,n(�1, . . . ,�n) (7)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

e�(2g�2+n)S0Zg,n(�1, . . . ,�n) (8)

=

p
�1�2

�1 + �2
(9)

hZ(�1)Z(�2)i (10)

⇢(E) = eS0


1

4⇡2
sinh

�
2⇡

p
E
�
+

�

2⇡
p
E

cosh
�
2⇡↵

p
E
��

,

⇠ eS0

2⇡

p
E +

�p
E

�
(11)

⇢(E) ⇠ eS0

p
E � E0 ⇠ eS0

p
E +

�p
E

� �2

2E3/2
+ . . .

�
(12)

X

j

tju
j
= �x (13)

⇢disk(E) =
eS0

2⇡

Z
(14)

1

ds2 =
dr2 + r2d✓2

(1� r2)2
(1)

IJT = �

Z �

0
d⌧

⇢
tan

⇡f

�
, ⌧

�
(2)

r = 1� "✓0 + . . . (3)

✓
r(⌧), ✓ =

2⇡

�
f(⌧)

◆
(4)

hZ(�1) . . . Z(�n)i =
Z

DgD� e�IJT[g,�] (5)

Z(�2) Z(�3) b1 b2 b3 (6)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

L�(2g�2+n)Zg,n(�1, . . . ,�n) (7)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

e�(2g�2+n)S0Zg,n(�1, . . . ,�n) (8)

=

p
�1�2

�1 + �2
(9)

hZ(�1)Z(�2)i (10)

⇢(E) = eS0


1

4⇡2
sinh

�
2⇡

p
E
�
+

�

2⇡
p
E

cosh
�
2⇡↵

p
E
��

,

⇠ eS0

2⇡

p
E +

�p
E

�
(11)

⇢(E) ⇠ eS0

p
E � E0 ⇠ eS0

p
E +

�p
E

� �2

2E3/2
+ . . .

�
(12)

X

j

tju
j
= �x (13)

⇢disk(E) =
eS0

2⇡

Z
(14)

1

ds2 =
dr2 + r2d✓2

(1� r2)2
(1)

IJT = �

Z �

0
d⌧

⇢
tan

⇡f

�
, ⌧

�
(2)

r = 1� "✓0 + . . . (3)

✓
r(⌧), ✓ =

2⇡

�
f(⌧)

◆
(4)

hZ(�1) . . . Z(�n)i =
Z

DgD� e�IJT[g,�] (5)

Z(�2) Z(�3) b1 b2 b3 (6)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

L�(2g�2+n)Zg,n(�1, . . . ,�n) (7)

D
Tre��1H . . .Tre��nH

E

conn.
=

1X

g=0

e�(2g�2+n)S0Zg,n(�1, . . . ,�n) (8)

=

p
�1�2

�1 + �2
(9)

hZ(�1)Z(�2)i (10)

⇢(E) = eS0


1

4⇡2
sinh

�
2⇡

p
E
�
+

�

2⇡
p
E

cosh
�
2⇡↵

p
E
��

,

⇠ eS0

2⇡

p
E +

�p
E

�
(11)

⇢(E) ⇠ eS0

p
E � E0 ⇠ eS0

p
E +

�p
E

� �2

2E3/2
+ . . .

�
(12)

X

j

tju
j
= �x (13)

⇢disk(E) =
eS0

2⇡

Z
(14)

1



JT gravity and matrices
• SSS realized that the theory is equivalent, in a holographic sense, to a 

matrix integral of size , with , such that L × L L ∼ eS0

QM partition function

• Based on comparing Mirzakhani’s recursion for Weil-Petersson volumes 
with matrix model loop equations
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• JT gravity: Computed in terms of WP 
volumes. They satisfy a recursion of 
their own found by Mirzakhani.

• Matrix Integral: Computed in terms of 
the topological recursion of matrix 
models with ρdisk = ρJT(E)

Eynard and Orantin proved that both recursions 
are identical (up to an integral transform)

SSS: This implies that pure JT gravity is holographically 
dual to a matrix integral, interpreted as an average over 
Hamiltonians 



The Factorization Puzzle

• Smoking gun of holography with disorder: 

• A possible answer is to add “baby universe” Hilbert space. 

[Yau Witten 99] …

[Coleman; Giddings Strominger 88]

• This does not quite work when computing entanglement entropies: an 
average quantum system is not necessarily a quantum system

[Giddings GJT 20]

tE

Zgrav(�1, �2) 6= Zgrav(�1)Zgrav(�2) (1)

Zgrav(�) =

Z
dH P (H) Tr

�
e��H

�
(2)

P (H) = e�LTr
�
V (H)

�
$ ⇢Sch(E) (3)

L⇥ L (4)

I = �1

2

Z
d2x

p
g[�R+ U(�)] (5)

U(�) $ V (H) (6)

ZBTZ [�, J ] = e��E0eS0

Z
DgD� e�IJT [g,�]

(7)

ds2 = g2D +�(dy +Ba⇠a)
2

(8)

A4D ! a2D (9)

⇢c=2
J (E) ⇠ (�1)

Je
1

2
S0(J)

cosh
�
⇡
p
EJT

�
p
EJT

(10)

⇢(E) = C
eS0

2⇡2
sinh

⇣
2⇡

p
2CE

⌘
(11)

ds2 =

✓
r2 � 1

c2

◆
dt2E +

dr2

r2 � 1
c2

+ r20

✓
d'� i

r0

✓
r � 1

c

◆
dtE +

d

c
dtE

◆2

(12)

� (13)

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2

⇣
d'� r�r+

r2
dt
⌘2

(14)

f(r) =
(r2 � r2+)(r

2 � r2�)

r2
(15)

Egap = 1/(8�) (16)

1

Zgrav(�1, �2) 6= Zgrav(�1)Zgrav(�2) (1)

Zgrav(�) =

Z
dH P (H) Tr

�
e��H

�
(2)

P (H) = e�LTr
�
V (H)

�
$ ⇢Sch(E) (3)

L⇥ L (4)

I = �1

2

Z
d2x

p
g[�R+ U(�)] (5)

U(�) $ V (H) (6)

ZBTZ [�, J ] = e��E0eS0

Z
DgD� e�IJT [g,�]

(7)

ds2 = g2D +�(dy +Ba⇠a)
2

(8)

A4D ! a2D (9)

⇢c=2
J (E) ⇠ (�1)

Je
1

2
S0(J)

cosh
�
⇡
p
EJT

�
p
EJT

(10)

⇢(E) = C
eS0

2⇡2
sinh

⇣
2⇡

p
2CE

⌘
(11)

ds2 =

✓
r2 � 1

c2

◆
dt2E +

dr2

r2 � 1
c2

+ r20

✓
d'� i

r0

✓
r � 1

c

◆
dtE +

d

c
dtE

◆2

(12)

� (13)

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2

⇣
d'� r�r+

r2
dt
⌘2

(14)

f(r) =
(r2 � r2+)(r

2 � r2�)

r2
(15)

Egap = 1/(8�) (16)

1

Zgrav(�1, �2) 6= Zgrav(�1)Zgrav(�2) (1)

Zgrav(�) =

Z
dH P (H) Tr

�
e��H

�
(2)

P (H) = e�LTr
�
V (H)

�
$ ⇢Sch(E) (3)

L⇥ L (4)

I = �1

2

Z
d2x

p
g[�R+ U(�)] (5)

U(�) $ V (H) (6)

ZBTZ [�, J ] = e��E0eS0

Z
DgD� e�IJT [g,�]

(7)

ds2 = g2D +�(dy +Ba⇠a)
2

(8)

A4D ! a2D (9)

⇢c=2
J (E) ⇠ (�1)

Je
1

2
S0(J)

cosh
�
⇡
p
EJT

�
p
EJT

(10)

⇢(E) = C
eS0

2⇡2
sinh

⇣
2⇡

p
2CE

⌘
(11)

ds2 =

✓
r2 � 1

c2

◆
dt2E +

dr2

r2 � 1
c2

+ r20

✓
d'� i

r0

✓
r � 1

c

◆
dtE +

d

c
dtE

◆2

(12)

� (13)

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2

⇣
d'� r�r+

r2
dt
⌘2

(14)

f(r) =
(r2 � r2+)(r

2 � r2�)

r2
(15)

Egap = 1/(8�) (16)

1



JT gravity with a gas of defects

• Motivations for doing this:

1. Generalize the dual matrix integral to general dilaton gravity theories


2. Application to 3D gravity

• Repeat the same procedure but allow the presence of dynamical defects. 
Sum over any number of them and any position.

[Maxfield, GJT 20] 
[Witten 20]

Defect fugacity:  λ

Deficit angle:  θ = 2π(1 − α)



2D dilaton-gravity 

• A defect is equivalent to inserting   in the JT path integral.λ∫ ge−2π(1−α)ϕ
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With potential 

• This covers a large class of two-derivative pure dilaton-gravity.
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• Then JT gravity with a gas of defects is equivalent to the following 
modification of the action
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Cut and glue v2
For defecit angles that satisfy  there is always a geodesic homologous to the 
holographic boundary. Therefore we can still use trumpets to glue. For example 
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3.4 Deformations of JT gravity

Sum over defects etc

Define defect fugacity � and angle ✓ = 2⇡(1� ↵)

Vg,n,k(b1, . . . , bn;↵1, . . . ,↵k) = Vol (Mn,g,k) (3.30)

3.5 2D dilaton gravity

Connection with generic pure 2D dilaton-gravities

3.5.1 Instanton gas

Before turning to the analysis of JT gravity with defects outlined above, we mention a possible

alternative approach, summing the KK instantons as an instanton gas. This incorporates the

e↵ect of the instantons into a shift of the dilaton potential. This method is usually introduced

as an approximation, taking a sum over instantons in a limit that they are well-separated

and do not interact. Here, however, if we think of our instantons as fundamental pointlike

objects in the two-dimensional theory, there is no such approximation required in principle.

Note first that we can introduce a single instanton by an insertion into the path integral
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Replace borders by defects b → 2πiα

[Tan Wong Zhang] [Do Norbury]



Cut and glue v2
The fact that we restrict to  is important. Consider for example the following two 
situations

α < 1/2

Geodesic No geodesic!

α < 1/2 1/2 < α < 1

SSS recipe cannot be applied. We will 
use a different method later
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n = 1. The top row shows the topologies for the disc n = 1, g = 0, with some number of
defects k = 0, 1, 2, . . ., of order eS0�k. The second row shows the n = 1, g = 1 contributions
for k = 0, 1, . . ., of order e�S0�k.
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The general amplitude we are interested in is computed by the path integral with n bound-

aries, each with boundary condition parameterized by its own renormalized length �. Without
loss of generality, it is su�cient to compute the connected amplitude, and following [7] we
denote this by
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The symmetry factors ki! in this definition of Zg,n,k are included to account for overcounting by
permutations of identical defects. With this definition, the k defects in Zg,n,k can be regarded
as distinguishable, labeled only by their defect parameters ↵, and it becomes irrelevant whether
two defects with the same ↵ are of the same or di↵erent species. We sketch the first few terms
in this expansion for a single boundary n = 1 in figure 1.

The remarkable result of [7] was that the amplitudes Zg,n (without defects) can be com-
puted from the Weil-Petersson (WP) volumes of the moduli spaces of constant-curvature sur-
faces with boundary. To understand this result, we note first that the dilaton appears linearly
in the action (3.1), so acts as a Lagrange multiplier constraining the curvature R2 = �2. The
resulting metrics are locally unique, so the path integral reduces to an integral over locations
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JT gravity with defects

• Main questions: 1) Can we perform the sum over defects explicitly to get new d.o.s? 
And 2) Is the theory dual to a matrix integral?

The answer to both questions is yes! 

• Before, it is instructive to consider the following question. Can we define a theory 
where we include a finite number of defects? For example, only one.

No, we have to sum over defects

(Including a single defect is analogous to the Maloney Witten partition function in 3D, 
and its ill-defined for similar reasons)
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Genus zero WP volumes

• To compute the genus zero d.o.s. we need to sum over defects. This is done with the 
following formula for genus zero WP volumes 
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Replace borders by defects b → 2πiα
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Exact density of states
• Using the previous formula for WP volumes we can compute the disk d.o.s. as

���

���g = 1 :

g = 0 :

Figure 1: The first few topologies contributing to the expansion of
⌦
Z(�)

↵
, as in (3.5) with

n = 1. The top row shows the topologies for the disc n = 1, g = 0, with some number of
defects k = 0, 1, 2, . . ., of order eS0�k. The second row shows the n = 1, g = 1 contributions
for k = 0, 1, . . ., of order e�S0�k.

For the p/q KK instanton in our 3D analysis, the action (2.38) gives us a defect

↵ =
1

q
, �p/q / exp

h
�

⇣
1� 1

q

⌘
S0 + 2⇡iJ p

q

i
, (3.4)

but in this section we take arbitrary parameters.
The general amplitude we are interested in is computed by the path integral with n bound-

aries, each with boundary condition parameterized by its own renormalized length �. Without
loss of generality, it is su�cient to compute the connected amplitude, and following [7] we
denote this by

⌦
Z(�1) · · ·Z(�n)

↵
C
. This amplitude can be expanded as a sum over sectors

give by di↵erent topologies, labeled by the genus g of the connected spacetime, as well as the
number of defects ki of each species i, with k =

P
i
ki in total:

⌦
Z(�1) · · ·Z(�n)
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g,k1,k2,...=0
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Y

i
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i

ki!

!
Zg,n,k(�1, . . . , �n;↵1, . . . ,↵k) (3.5)

The symmetry factors ki! in this definition of Zg,n,k are included to account for overcounting by
permutations of identical defects. With this definition, the k defects in Zg,n,k can be regarded
as distinguishable, labeled only by their defect parameters ↵, and it becomes irrelevant whether
two defects with the same ↵ are of the same or di↵erent species. We sketch the first few terms
in this expansion for a single boundary n = 1 in figure 1.

The remarkable result of [7] was that the amplitudes Zg,n (without defects) can be com-
puted from the Weil-Petersson (WP) volumes of the moduli spaces of constant-curvature sur-
faces with boundary. To understand this result, we note first that the dilaton appears linearly
in the action (3.1), so acts as a Lagrange multiplier constraining the curvature R2 = �2. The
resulting metrics are locally unique, so the path integral reduces to an integral over locations
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• We can check this matches the previous perturbative calculation.



Exact density of states
• Some numerical calculation of the density of states:
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Figure 2: Density of states of JT gravity with (black) and without (dashed blue) defects, for
2� = 1. (a) For ↵ = 1/2 < ↵c and � = �0.1 < 0 we see E0 > 0 as expected and the theory is
fine (b) For � = 0.01 smaller than �c(↵ = 1/2) ⇡ 0.06 we get E0 < 0 and the theory is fine (c) For
� = 0.08 > �c(1/2) the density of states becomes negative in a finite range of energies.

as we found perturbatively in section 3.2. The prefactor is proportional to the integrand in
the expression above evaluated at u ! 2�E0.

Now, we should check whether the model we have arrived at makes sense as a double-
scaled matrix model (at least perturbatively in the genus expansion; we leave aside possible
nonperturbative instabilities for now which are also present in JT gravity). For this, we require
that the density of states ⇢disc is positive for all E > E0. Now that we have an expression for
this density at finite �, we can explore this for a range of parameters ↵ and �. For simplicity
we will restrict to the case of a single species of defect.

First we can look at large energies. In this regime, it is possible to approximate the density
of states by ⇢(E) ⇠ e2⇡

p
2�E for ↵ < 1 and ⇢(E) ⇠ �e2⇡↵

p
2�E for ↵ > 1. This change of the

ultraviolet behavior for ↵ > 1 is not unexpected from the gravitational perspective, since
such defects would be favored to proliferate and destroy (or at least substantially modify) the
asymptotic region of the geometry. As before, we will now focus on 0 < ↵ < 1.

We find that for all such ↵, there is a range of � for which ⇢disc is positive. However, this can
fail for su�ciently large �. There are several cases to consider; we show some representative
examples from numerical integration of (3.50) in figure 2.

• For ↵c < ↵ < 1, where the critical value ↵c ⇡ 0.627 is the ratio between the first zero of
J0 and the first zero of J1, the density of states is positive for all energies, for any choice
of �.

• For 0 < ↵ < ↵c and � < 0 the density of states is positive. An example is shown in
figure 2(a).

• For 0 < ↵ < ↵c and � > 0, the theory is well behaved for couplings smaller than a
critical value �c(↵). This critical coupling is given implicitly by solving the following
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• The theory is perfectly fine for . For  the density of states can become 
negative! This critical value is finite.

λ < 0 λc < λ

• The interpretation and fate of the model beyond the critical fugacity is an open 
question. 

λ < 0 0 < λ < λc λc < λ



• Previous calculation can be generalized to any number of 
boundaries

So far, we have just been plugging the formula (3.34) for the Weil-Petersson volumes into
the expression for the amplitudes with k defects. At this point, we can explicitly perform the
sum over all defects using the Lagrange reversion theorem (see Appendix B for a statement
of the theorem). We obtain precisely the answer expected from the double-scaled matrix
integral, given by
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where we defined the function u(x) implicitly through
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p
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⌘
. (3.39)

For later convenience, we have chosen to define u(x) with a minus sign relative to the conven-
tional definition used for uJT(x). We can eliminate the variable x? from these expressions to
obtain a more direct implicit definition for u(x),

p
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p
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where we used that In(x) = i�nJn(ix) to simplify the expression. In the old matrix model
literature [46, 47] this equation is called the (genus zero) string equation, u(x) is called the
heat capacity and x is related to the leading KdV parameter. This function characterizes the
theory completely in the double scaling limit and is equivalent to giving the genus zero density
of states (or equivalently the spectral curve), which we will compute later. It is evident that
taking � ! 0 sends u(x) ! �uJT(x), recovering the JT gravity string equation.

Taking the x ! 0 limit of the expression above we get the final answer for the two-loop
amplitude corresponding to JT gravity with a gas of defects
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where the exact edge of the spectrum is given by E0 = (2�)�1u(x = 0). The zero-point energy
can be written more explicitly, using the string equation, as the largest solution E0 of the
equation p

2�E0 I1
⇣
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p
2�E0

⌘
+ 2⇡� I0
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p
2�E0
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The gravitational result (3.41) from summing over defects thus takes the precise functional
form (3.31) required for a double-scaled matrix integral.

This result can be straightforwardly generalized to allow a number of flavors NF of defects
with weighting �i and angles ↵i for i = 1, . . . , NF. Using the second version of the Lagrange
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• This is the answer for a hermitian matrix integral in the double 
scaling limit!

[Moore Seiberg Staudacher]

[Ambjorn, Jurkiewicz, Makeenko]

With “string equation”:

Exact answer at  from 
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The String Equation
• A matrix integral in the double-scaling limit is specified by coefficients  throughtk

We rewrite the path integral now over ⇢ and �. We will call � the dilaton and define a new
two-dimensional metric

g = e
2⇢
ĝ. (3.11)

Notice this metric is not the same as the worldsheet metric in the minimal string. In terms
of this new metric and dilaton the minimal string can be rewritten as

I = �
1

2

Z
p
g
⇥
�R + 4µ sinh

�
2⇡b2�

�⇤
. (3.12)

This has the most general two-derivative form of dilaton-gravity �
1
2

R
�R + 2U(�), with

dilaton potential given by U(�) = 2µ sinh (2⇡b2�) (this potential was studied for di↵erent
reasons in [48]). This suggests that the minimal string is equal to a certain dilaton-gravity
theory and some checks were performed in [19]. This theory simplifies in the limit b ! 0
where the potential is linear and the theory becomes Jackiw-Teitelboim gravity

I = �
1

2

Z
p
g �(R + 2⇤), (3.13)

where in the limit we keep ⇤ ⌘ 4⇡b2µ, which becomes the absolute value of the two-
dimensional cosmological constant, fixed and set to one. We will call this the pure JT gravity
limit or JT limit for short. We can check that this identification is true by comparing the
disk density of states [9]. We will extend this to the case of the minimal string deformed by
tachyon operators in section 4.

3.2 String equation

From the perspective of the loop equations [49, 50], all the information of a matrix integral
is encoded in the disk density of state ⇢0(E), which is also equivalent to giving the matrix
potential V (H). Higher genus contributions are determined from the topological recursion
[50, 51]; for an example on how this is done see [9]. Therefore, if two theories that are dual to
a matrix integral share the same disk density of states it means the theories are equivalent to
all orders in the genus expansion. Since we will work in the double-scaling limit we will ‘label’
the theory by ⇢0(E) instead, since the precise matrix potential depends on how we regularize
the theory away from the double-scaling limit.

It will be very useful when studying deformations to look at the matrix integral from a
di↵erent perspective: the string equation [10] (building on previous work [52, 53, 54, 55, 15]).
To leading order in the genus expansion the string equation has the following form

X

k

tku
k = x, (3.14)

where x is a dummy variable we can use to compute certain observables and tk are the KdV
couplings. We include t0 on the left-hand side so at the end of the day we will always fix
x = 0. This can be derived by taking the double-scaling limit of the orthogonal polynomial
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• Related to Disk (genus zero) density of states by:
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• Higher-genus corrections determined by replacing uk → Rk[u; ℏ = e−S0]

[Brezin, Kazakov] [Douglas Shenker] [Gross Migdal]
[Banks Douglas Seiberg Shenker]

• JT gravity turns on infinite couplings 

So far, we have just been plugging the formula (3.34) for the Weil-Petersson volumes into
the expression for the amplitudes with k defects. At this point, we can explicitly perform the
sum over all defects using the Lagrange reversion theorem (see Appendix B for a statement
of the theorem). We obtain precisely the answer expected from the double-scaled matrix
integral, given by

hZ(�1)Z(�2)iC,g=0 =
1

2⇡

p
�1�2

�1 + �2

e�
1
2� u(x)(�1+�2)

���
x=0

, (3.38)

where we defined the function u(x) implicitly through

u(x) ⌘ �uJT(x?(x)), with x? = x+ �J0
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p
uJT(x?)

⌘
. (3.39)

For later convenience, we have chosen to define u(x) with a minus sign relative to the conven-
tional definition used for uJT(x). We can eliminate the variable x? from these expressions to
obtain a more direct implicit definition for u(x),
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where we used that In(x) = i�nJn(ix) to simplify the expression. In the old matrix model
literature [46, 47] this equation is called the (genus zero) string equation, u(x) is called the
heat capacity and x is related to the leading KdV parameter. This function characterizes the
theory completely in the double scaling limit and is equivalent to giving the genus zero density
of states (or equivalently the spectral curve), which we will compute later. It is evident that
taking � ! 0 sends u(x) ! �uJT(x), recovering the JT gravity string equation.

Taking the x ! 0 limit of the expression above we get the final answer for the two-loop
amplitude corresponding to JT gravity with a gas of defects
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where the exact edge of the spectrum is given by E0 = (2�)�1u(x = 0). The zero-point energy
can be written more explicitly, using the string equation, as the largest solution E0 of the
equation p
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The gravitational result (3.41) from summing over defects thus takes the precise functional
form (3.31) required for a double-scaled matrix integral.

This result can be straightforwardly generalized to allow a number of flavors NF of defects
with weighting �i and angles ↵i for i = 1, . . . , NF. Using the second version of the Lagrange
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The String Equation
• A matrix integral in the double-scaling limit is specified by coefficients  throughtk

We rewrite the path integral now over ⇢ and �. We will call � the dilaton and define a new
two-dimensional metric

g = e
2⇢
ĝ. (3.11)

Notice this metric is not the same as the worldsheet metric in the minimal string. In terms
of this new metric and dilaton the minimal string can be rewritten as
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�
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. (3.12)

This has the most general two-derivative form of dilaton-gravity �
1
2

R
�R + 2U(�), with

dilaton potential given by U(�) = 2µ sinh (2⇡b2�) (this potential was studied for di↵erent
reasons in [48]). This suggests that the minimal string is equal to a certain dilaton-gravity
theory and some checks were performed in [19]. This theory simplifies in the limit b ! 0
where the potential is linear and the theory becomes Jackiw-Teitelboim gravity
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Z
p
g �(R + 2⇤), (3.13)

where in the limit we keep ⇤ ⌘ 4⇡b2µ, which becomes the absolute value of the two-
dimensional cosmological constant, fixed and set to one. We will call this the pure JT gravity
limit or JT limit for short. We can check that this identification is true by comparing the
disk density of states [9]. We will extend this to the case of the minimal string deformed by
tachyon operators in section 4.

3.2 String equation

From the perspective of the loop equations [49, 50], all the information of a matrix integral
is encoded in the disk density of state ⇢0(E), which is also equivalent to giving the matrix
potential V (H). Higher genus contributions are determined from the topological recursion
[50, 51]; for an example on how this is done see [9]. Therefore, if two theories that are dual to
a matrix integral share the same disk density of states it means the theories are equivalent to
all orders in the genus expansion. Since we will work in the double-scaling limit we will ‘label’
the theory by ⇢0(E) instead, since the precise matrix potential depends on how we regularize
the theory away from the double-scaling limit.

It will be very useful when studying deformations to look at the matrix integral from a
di↵erent perspective: the string equation [10] (building on previous work [52, 53, 54, 55, 15]).
To leading order in the genus expansion the string equation has the following form

X

k

tku
k = x, (3.14)

where x is a dummy variable we can use to compute certain observables and tk are the KdV
couplings. We include t0 on the left-hand side so at the end of the day we will always fix
x = 0. This can be derived by taking the double-scaling limit of the orthogonal polynomial
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• Higher-genus corrections determined by replacing uk → Rk[u; ℏ = e−S0]

[Brezin, Kazakov] [Douglas Shenker] [Gross Migdal]
[Banks Douglas Seiberg Shenker]

• JT gravity turns on infinite couplings 

So far, we have just been plugging the formula (3.34) for the Weil-Petersson volumes into
the expression for the amplitudes with k defects. At this point, we can explicitly perform the
sum over all defects using the Lagrange reversion theorem (see Appendix B for a statement
of the theorem). We obtain precisely the answer expected from the double-scaled matrix
integral, given by
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where we defined the function u(x) implicitly through
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For later convenience, we have chosen to define u(x) with a minus sign relative to the conven-
tional definition used for uJT(x). We can eliminate the variable x? from these expressions to
obtain a more direct implicit definition for u(x),
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where we used that In(x) = i�nJn(ix) to simplify the expression. In the old matrix model
literature [46, 47] this equation is called the (genus zero) string equation, u(x) is called the
heat capacity and x is related to the leading KdV parameter. This function characterizes the
theory completely in the double scaling limit and is equivalent to giving the genus zero density
of states (or equivalently the spectral curve), which we will compute later. It is evident that
taking � ! 0 sends u(x) ! �uJT(x), recovering the JT gravity string equation.

Taking the x ! 0 limit of the expression above we get the final answer for the two-loop
amplitude corresponding to JT gravity with a gas of defects
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where the exact edge of the spectrum is given by E0 = (2�)�1u(x = 0). The zero-point energy
can be written more explicitly, using the string equation, as the largest solution E0 of the
equation p
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The gravitational result (3.41) from summing over defects thus takes the precise functional
form (3.31) required for a double-scaled matrix integral.

This result can be straightforwardly generalized to allow a number of flavors NF of defects
with weighting �i and angles ↵i for i = 1, . . . , NF. Using the second version of the Lagrange
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• A matrix integral in the double-scaling limit is specified by coefficients  throughtk

We rewrite the path integral now over ⇢ and �. We will call � the dilaton and define a new
two-dimensional metric

g = e
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Notice this metric is not the same as the worldsheet metric in the minimal string. In terms
of this new metric and dilaton the minimal string can be rewritten as
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dilaton potential given by U(�) = 2µ sinh (2⇡b2�) (this potential was studied for di↵erent
reasons in [48]). This suggests that the minimal string is equal to a certain dilaton-gravity
theory and some checks were performed in [19]. This theory simplifies in the limit b ! 0
where the potential is linear and the theory becomes Jackiw-Teitelboim gravity
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where in the limit we keep ⇤ ⌘ 4⇡b2µ, which becomes the absolute value of the two-
dimensional cosmological constant, fixed and set to one. We will call this the pure JT gravity
limit or JT limit for short. We can check that this identification is true by comparing the
disk density of states [9]. We will extend this to the case of the minimal string deformed by
tachyon operators in section 4.

3.2 String equation

From the perspective of the loop equations [49, 50], all the information of a matrix integral
is encoded in the disk density of state ⇢0(E), which is also equivalent to giving the matrix
potential V (H). Higher genus contributions are determined from the topological recursion
[50, 51]; for an example on how this is done see [9]. Therefore, if two theories that are dual to
a matrix integral share the same disk density of states it means the theories are equivalent to
all orders in the genus expansion. Since we will work in the double-scaling limit we will ‘label’
the theory by ⇢0(E) instead, since the precise matrix potential depends on how we regularize
the theory away from the double-scaling limit.

It will be very useful when studying deformations to look at the matrix integral from a
di↵erent perspective: the string equation [10] (building on previous work [52, 53, 54, 55, 15]).
To leading order in the genus expansion the string equation has the following form
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where x is a dummy variable we can use to compute certain observables and tk are the KdV
couplings. We include t0 on the left-hand side so at the end of the day we will always fix
x = 0. This can be derived by taking the double-scaling limit of the orthogonal polynomial
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• Higher-genus corrections determined by replacing uk → Rk[u; ℏ = e−S0]

[Brezin, Kazakov] [Douglas Shenker] [Gross Migdal]
[Banks Douglas Seiberg Shenker]

• JT gravity turns on infinite couplings 

So far, we have just been plugging the formula (3.34) for the Weil-Petersson volumes into
the expression for the amplitudes with k defects. At this point, we can explicitly perform the
sum over all defects using the Lagrange reversion theorem (see Appendix B for a statement
of the theorem). We obtain precisely the answer expected from the double-scaled matrix
integral, given by
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For later convenience, we have chosen to define u(x) with a minus sign relative to the conven-
tional definition used for uJT(x). We can eliminate the variable x? from these expressions to
obtain a more direct implicit definition for u(x),
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where we used that In(x) = i�nJn(ix) to simplify the expression. In the old matrix model
literature [46, 47] this equation is called the (genus zero) string equation, u(x) is called the
heat capacity and x is related to the leading KdV parameter. This function characterizes the
theory completely in the double scaling limit and is equivalent to giving the genus zero density
of states (or equivalently the spectral curve), which we will compute later. It is evident that
taking � ! 0 sends u(x) ! �uJT(x), recovering the JT gravity string equation.

Taking the x ! 0 limit of the expression above we get the final answer for the two-loop
amplitude corresponding to JT gravity with a gas of defects
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where the exact edge of the spectrum is given by E0 = (2�)�1u(x = 0). The zero-point energy
can be written more explicitly, using the string equation, as the largest solution E0 of the
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The gravitational result (3.41) from summing over defects thus takes the precise functional
form (3.31) required for a double-scaled matrix integral.

This result can be straightforwardly generalized to allow a number of flavors NF of defects
with weighting �i and angles ↵i for i = 1, . . . , NF. Using the second version of the Lagrange
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Topological Recursion: 
Deformation Theorem

• Eynard and Orantin showed that under some assumptions, if we have a 
solution of the topological recursion, the following is also a solution

• For a choice of contour  and function  this is precisely the sum over 
defects
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(Important in construction of “Tau” and “Baker-Akhiezer” function, related to 
integrability) 
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• JT gravity + defects: Computed in 
terms of WP volumes and includes a 
sum over defects

• Matrix Integral: Computed in terms 
of the topological recursion of matrix 
models applied to the new density of 
states ρdisk = ρJT+def(E)

Eynard and Orantin “deformation theorem” guarantees 
both procedures agree!

JT gravity with a gas of defects (or pure dilaton-gravity) is 
holographically dual to a matrix integral, interpreted as an 
average over Hamiltonians 



 

2D gravity as a Minimal String



The minimal string theory
• The world-sheet description is  

Minimal String = (p, q) Minimal Model + Liouville + Ghosts

cp,q + cLiouville + cghosts = 0

• We focus on the one-matrix series  with  Liouville coupling is (2,p) p = 3,5,…
b = 2/p

• In the limit  the theory becomes JT gravity. New twist: interpret the 
matrix holographically as a dual random Hamiltonian.

p → ∞

[Saad Shenker Stanford]

[Kazakov] [Staudacher]



The disk partition function
• From a worldsheet CFT perspective we need to compute the marked 

partition function for fixed boundary cosmological constant 

• Laplace transform to go to fixed length 

[FZZ, T]

The starting point is the disk with FZZT brane boundary conditions, specified by the
boundary cosmological constant µB. It will be useful to distinguish two di↵erent notions of
partition function of the disk. The first is the unmarked partition function Z(µB)U. We will
refer to the second type as the mark partition function Z(µB)M defined by
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M
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U =
⌦
c e

b�
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. (3.1)

This is equivalent to the partition function on a marked disk, where a boundary base point
has been chosen, and we do not consider translations of the boundary coordinate as a gauge
symmetry [18]. We will refer to insertions of eb� as marking operators. This corresponds to
inserting a factor of ` in the length basis. The fixed length partition function is then defined
by the inverse Laplace transform
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This is explained, for example, by Kostov in [35]. One can check from the path integral definition
of Liouville theory that this integral when combined with the boundary term produces a fixed
length delta function, justifying this formula.

The first step is then to compute the FZZT partition function Z(µB)U. Following the
calculation of Seiberg and Shih done in [36], its useful to di↵erentiate with respect to the bulk
cosmological constant in order to fix all the symmetries in the problem
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where in the second line we pick a normalization such that the result is precisely the bulk
cosmological constant one-point function derived in [17] (Seiberg and Shih make a di↵erent
normalization choice). Integrating this with respect to the cosmological constant µ we obtain
the unmarked disk partition function
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where the FZZT parameter should be understood as implicitly depending on µB and µ. We
compute now the marked partition function di↵erentiating with respect to µB which simplifies
the µB dependence considerably

Z(µB)
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1
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b
, (3.6)

where we omit the s independent prefactor that we will put back later. The next step is to
compute the integral defined in (3.2). This can be done by deforming the contour around the
negative real axis, as shown in figure 2. This allows us to write the integral as
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• Rotate contour
C

�

µB

Figure 2: Contour deformation from the original one (in green) to a deformed one that wraps the
negative real axis (blue line). The segment (�, 0) has no branch cut and the contour can be further
deformed to the semi-infinite interval (�1,�).
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Z
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dµBe
µB` Disc [Z(µB)

M] (3.7)

in terms of the discontinuity Disc [Z(µB)M] along the negative real axis of the marked partition
function.

A first observation, as shown in figure 2, is that the branch cut along the negative real axis
starts at µB = �, where  ⌘

p
µ/ sin ⇡b2 = µB(s = 0). The value of s ⇠ cosh�1(µB/) on

the negative real axis for µB 2 (�,) is purely imaginary and conjugate above and below the
real axis. Since any even function of s has no discontinuity, Disc [Z(|µB| < )M] = 0.

In what follows we will be mostly interested in the ` dependence of the final answer. On
the interval (�1,�), we can use the fact that arccosh(µB


+ i") = arccosh |µB |


± i⇡. Then

the discontinuity of an arbitrary function F (s) on this interval is given by Disc[F (s)] = F (s+
i/2b)� F (s� i/2b). Using this fact we can compute explicitly the discontinuity as
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We can use this to compute Disc [Z(µB)M] and inserting the answer into (3.7) we find the
fixed-length marked disk amplitude
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This answer is consistent with the result of [17]. Keeping track of the prefactor appearing in

(3.3), the normalization is given by N = (⇡�(b2))
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some new, that are computed in this paper. We introduce the quantities:

µB(s) =  cosh 2⇡bs,  ⌘

p
µ

p
sin ⇡b2

, (1.3)

where µ is the bulk cosmological constant, µB(s) is the boundary cosmological constant for
FZZT boundaries labeled by s, and b is defined through the central charge of the Liouville field
cL = 1 + 6Q2, with Q = b+ 1/b.

Partition Function: We compute the marked partition function

Z(`) = Nµ
Q
2b

Z
1

0

ds e
�`µB(s)

⇢(s), (1.4)

where we define the spectral weight

⇢(s) ⌘ sinh 2⇡bs sinh
2⇡s

b
, (1.5)

which coincides with the Virasoro modular S-matrix S0
s = ⇢(s), and N is a length independent

normalization. After performing the integral, the partition function can be put in the more
familiar form Z(`) ⇠ 1

`
µ

1
2b2K1/b2(`). This quantity was previously obtained by [17] (and from

the dual matrix integral by [18]). We present a more systematic derivation which we found to
be more useful in order to generalize this to correlation functions.
Following [12] we interpret µB(s) as the energy of the boundary theory dual to the bulk gravity,
⇢(s) as a density of states, and ` as an inverse temperature.

Bulk one-point function: We compute the fixed length partition function with a bulk
insertion T↵M , and P is the Liouville momentum associated to ↵M . This can be depicted as

hT↵M i
`
= `

T (1.6)

Repeating the previous procedure we obtain

hT↵M i
`
=

2

b

Z
1

0

ds e
�`µB(s) cos 4⇡Ps. (1.7)

The integrand coincides with the Virasoro modular S-matrix SP
s = cos 4⇡Ps. We interpret

the bulk operator as creating a defect (for P imaginary) or a hole (for P real) on the physical
space. This interpretation is consistent with classical solutions of the Liouville equation, and
also becomes clear in the JT gravity limit [19].
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A sketch of a proof
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• The action becomes 2D dilaton-gravity:
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[Seiberg Stanford]

which can be found in [79] and y(x) is the density of states and x the matrix eigenvalue. For
the minimal string one should take y(x) = 1
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x)). Even though we were

not able to perform the integrals explicitly we checked numerically that both quantities match
when parameters are appropriately identified
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This check depends crucially on the details of the minimal string density of states since this
contribution is not universal in the double scaling limit.

Finally we can also compute this contribution with a fixed length boundary. Doing the
inverse Laplace transform and using the discontinuity of the integrand we get
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where we redefined � = 2P/b. As we noticed for the cylinder this again has the form of an
integral over a trumpet contribution with parameter � and a minimal string generalization of
the WP measure for a crosscap. Following the notation used in the main text we define this as
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We can look at the JT gravity limit where the Bessel function becomes the trumpet partition
function and this volume becomes
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in the b ! 0 limit, for fixed bJT. This matches with the answer found directly by Stanford and
Witten [79] up to an appropriate order one rescaling of bJT. As pointed out in Appendix F of
[79] from a matrix integral perspective, we see here directly that the answer is finite for finite
b since the tanh⇡� factor in (E.8) makes the � ! 0 limit smooth.

F JT vs Liouville gravity

The connection between Liouville gravity and JT gravity seems to be very robust. We have
checked this for several observables finding a match in each case. Is there a derivation then of
this correspondence? In this appendix we want to make some comments in this direction.

A possible derivation was done by Stanford and Seiberg [80]. The idea is to start with
the action for the gravitational Liouville field � and the matter field � written as a time-like
Liouville field as in (2.4). For simplicity we can pick the fiducial metric to be a flat disk
ĝµ⌫ = �µ⌫ . If we parametrize the fields as � = b
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• Describe the minimal string with Liouville field  and the minimal model 
with a Coulomb gas (time-like Liouville) field 

ϕ
χ

• Define a new metric  and dilaton  byg = e2ρ ̂g Φ

• The limit  automatically gives JT gravityp → ∞
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An example: One defect

• We can compute the partition function to leading order in the deformation

• From a worldsheet CFT perspective we need to compute 

some new, that are computed in this paper. We introduce the quantities:

µB(s) =  cosh 2⇡bs,  ⌘

p
µ

p
sin ⇡b2

, (1.3)

where µ is the bulk cosmological constant, µB(s) is the boundary cosmological constant for
FZZT boundaries labeled by s, and b is defined through the central charge of the Liouville field
cL = 1 + 6Q2, with Q = b+ 1/b.

Partition Function: We compute the marked partition function

Z(`) = Nµ
Q
2b

Z
1

0

ds e
�`µB(s)

⇢(s), (1.4)

where we define the spectral weight

⇢(s) ⌘ sinh 2⇡bs sinh
2⇡s

b
, (1.5)

which coincides with the Virasoro modular S-matrix S0
s = ⇢(s), and N is a length independent

normalization. After performing the integral, the partition function can be put in the more
familiar form Z(`) ⇠ 1

`
µ

1
2b2K1/b2(`). This quantity was previously obtained by [17] (and from

the dual matrix integral by [18]). We present a more systematic derivation which we found to
be more useful in order to generalize this to correlation functions.
Following [12] we interpret µB(s) as the energy of the boundary theory dual to the bulk gravity,
⇢(s) as a density of states, and ` as an inverse temperature.

Bulk one-point function: We compute the fixed length partition function with a bulk
insertion T↵M , and P is the Liouville momentum associated to ↵M . This can be depicted as

hT↵M i
`
= `

T (1.6)

Repeating the previous procedure we obtain

hT↵M i
`
=

2

b

Z
1

0

ds e
�`µB(s) cos 4⇡Ps. (1.7)

The integrand coincides with the Virasoro modular S-matrix SP
s = cos 4⇡Ps. We interpret

the bulk operator as creating a defect (for P imaginary) or a hole (for P real) on the physical
space. This interpretation is consistent with classical solutions of the Liouville equation, and
also becomes clear in the JT gravity limit [19].

5

• The result for this bulk one-point function matches with the one defect 
amplitude in the disk (in the JT limit)  

straints), the operator insertions of interest Bi and Ti have to be worldsheet coordinate-invariant.
The familiar strategy from string theory is to restrict these to conformal weight one (in both
holomorphic and anti-holomorphic sectors), and then integrate them over the entire worldsheet:

B =

I

@⌃

dx�M(x)e
��(x)

, T =

Z

⌃

d
2
zOM(z, z̄)e

2↵�(z,z̄)
. (1.1)

Here �M and OM denote boundary and bulk matter operators, � is the Liouville field (scale
factor in physical metric) and the parameters � and ↵ are tuned to the matter operator to
make the integrand marginal in both cases. These operators will be labeled by the Liouville
parameters corresponding to the matter operators ↵M and �M (see (2.7) and (2.22) for the
definition). The conventional interpretation of these formulas is that the bare matter operators
�M and OM (as objects in only the matter CFT), are gravitationally dressed by the Liouville
vertex operators e��(x) and e

2↵�(z,z̄) to produce observable worldsheet di↵-invariant operators.
From this perspective, the matter fields are the more fundamental objects and we will indeed
reach this conclusion throughout our work as well. As well-known in string theory, we can
use the SL(2,R) isometries of the disk to gauge-fix the worldsheet location of three degrees of
freedom (where a bulk operator counts as two, and a boundary operator as one). If one has
more operator insertions, there are non-trivial integrations left over the moduli space of the
punctured disk. Throughout this work, we only focus on the case without moduli integration.
This leaves only four disk configurations which we explicitly investigate. In the final section of
this work, we investigate higher topology, and in particular the annulus diagram which has a
single worldsheet modulus.

It should be emphasized that the worldsheet boundary coordinates xi (and their moduli) and
the physical distances `i are distinct. They are only related by the non-local (and not so
restrictive) constraints:

`i =

Z
xi+1

xi

dx e
b�(x) (1.2)

in terms of the Liouville field � appearing in the Liouville gravity models we will consider.
For all disk cases we study, the worldsheet coordinate x-dependence drops out due to gauge-
fixing, but the final result depends explicitly on the physical distances `. In this sense, even
though boundary operators are integrated over the worldsheet as in (1.1), they behave as local
insertions in the physical space and their gravitational dressing has the e↵ect of fixing geodesic
distances between them. Moreover, even though the worldsheet theory is a CFT, the boundary
amplitudes as a function of physical lengths do not respect conformal symmetry (see for exam-
ple (1.9) below). For the annulus amplitude, there is a single worldsheet modulus ⌧ that needs
to be integrated over. Doing so leads in the end to an amplitude that depends on the physical
lengths of both boundaries of the annulus.

Next we present a summary of the main results regarding fixed length amplitudes, some known
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From tachyons to defects
• Consider the following perturbation of the minimal string
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• In the dilaton-gravity description this becomes 

5 Dilaton-gravity

We will argue that there is a connection between deformations of the minimal string and
dilaton-gravity theories, and we study the large p limit of these theories. The minimal string
formulation implies a precise relation between the defect parameters and the dilaton potential
which di↵ers from the one proposed in [25]. We then use the Belavin-Zamolodchikov string
equation to propose an exact solution of these dilaton-gravity theories.

5.1 The minimal string as 2D dilaton-gravity

To explain the first point we again use the argument of [20] (see also [19]) to rewrite the min-
imal string action in terms of a time-like Liouville field. We apply the same field redefinition
(3.9)-(3.10) to the tachyon insertions present in the deformation of the minimal string action.
Ignoring changes in normalization, this gives

Z p
ĝ O1,n e

2↵L� !

Z p
ĝ e

2↵M�
e
2↵L� !

Z
p
g e

�2⇡b2n�
, (5.1)

where g is the JT gravity metric and � the JT dilaton. The final proposal is that the deformed
minimal string is equivalent to a two-dimensional dilaton-gravity theory

I = �
1

2

Z
p
g [�R + 2U(�)] , (5.2)

with the following dilaton potential

U(�) = 2µ sinh
�
2⇡b2�

�
+

m�1X

n=1

⌧n e
�2⇡b2n�

, (5.3)

where n = 1, . . . ,m�1 9. The first term is the undeformed minimal string potential derived in
section 3.1. We can take the JT limit of this dilaton-gravity action using the scaling introduced
in (4.2) n = (1� ↵)/b2. Each deformation term becomes

⌧n

Z
p
g e

�2⇡b2n�
! ⌧n

Z
p
g e

�2⇡(1�↵)�
, (5.4)

which is the same dilaton potential associated to one defect species. This gives yet another
perspective on why deformations of the minimal string matched with JT gravity with defects
in the previous section.

The conventional normalization of the minimal model operator does not match with the
time-like Liouville exponential required in this derivation. Therefore the parameter ⌧n here is
rescaled with respect to the one used in the previous section. We analyze this in detail in the
next section.

9It would be interesting to understand from the dilaton-gravity perspective whether the exponent in the
dilaton potential has to be quantized at finite p. A more complete understanding of the minimal model as
time-like Liouville would very likely answer this question (see [30] for some progress in this direction).
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From tachyons to defects
• Consider the following perturbation of the minimal string
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• In the dilaton-gravity description this becomes 

5 Dilaton-gravity

We will argue that there is a connection between deformations of the minimal string and
dilaton-gravity theories, and we study the large p limit of these theories. The minimal string
formulation implies a precise relation between the defect parameters and the dilaton potential
which di↵ers from the one proposed in [25]. We then use the Belavin-Zamolodchikov string
equation to propose an exact solution of these dilaton-gravity theories.

5.1 The minimal string as 2D dilaton-gravity

To explain the first point we again use the argument of [20] (see also [19]) to rewrite the min-
imal string action in terms of a time-like Liouville field. We apply the same field redefinition
(3.9)-(3.10) to the tachyon insertions present in the deformation of the minimal string action.
Ignoring changes in normalization, this gives
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where g is the JT gravity metric and � the JT dilaton. The final proposal is that the deformed
minimal string is equivalent to a two-dimensional dilaton-gravity theory
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where n = 1, . . . ,m�1 9. The first term is the undeformed minimal string potential derived in
section 3.1. We can take the JT limit of this dilaton-gravity action using the scaling introduced
in (4.2) n = (1� ↵)/b2. Each deformation term becomes
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which is the same dilaton potential associated to one defect species. This gives yet another
perspective on why deformations of the minimal string matched with JT gravity with defects
in the previous section.

The conventional normalization of the minimal model operator does not match with the
time-like Liouville exponential required in this derivation. Therefore the parameter ⌧n here is
rescaled with respect to the one used in the previous section. We analyze this in detail in the
next section.

9It would be interesting to understand from the dilaton-gravity perspective whether the exponent in the
dilaton potential has to be quantized at finite p. A more complete understanding of the minimal model as
time-like Liouville would very likely answer this question (see [30] for some progress in this direction).

26

⇒

5 Dilaton-gravity

We will argue that there is a connection between deformations of the minimal string and
dilaton-gravity theories, and we study the large p limit of these theories. The minimal string
formulation implies a precise relation between the defect parameters and the dilaton potential
which di↵ers from the one proposed in [25]. We then use the Belavin-Zamolodchikov string
equation to propose an exact solution of these dilaton-gravity theories.

5.1 The minimal string as 2D dilaton-gravity

To explain the first point we again use the argument of [20] (see also [19]) to rewrite the min-
imal string action in terms of a time-like Liouville field. We apply the same field redefinition
(3.9)-(3.10) to the tachyon insertions present in the deformation of the minimal string action.
Ignoring changes in normalization, this gives

Z p
ĝ O1,n e

2↵L� !

Z p
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We will argue that there is a connection between deformations of the minimal string and
dilaton-gravity theories, and we study the large p limit of these theories. The minimal string
formulation implies a precise relation between the defect parameters and the dilaton potential
which di↵ers from the one proposed in [25]. We then use the Belavin-Zamolodchikov string
equation to propose an exact solution of these dilaton-gravity theories.
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To explain the first point we again use the argument of [20] (see also [19]) to rewrite the min-
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where g is the JT gravity metric and � the JT dilaton. The final proposal is that the deformed
minimal string is equivalent to a two-dimensional dilaton-gravity theory
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where n = 1, . . . ,m�1 9. The first term is the undeformed minimal string potential derived in
section 3.1. We can take the JT limit of this dilaton-gravity action using the scaling introduced
in (4.2) n = (1� ↵)/b2. Each deformation term becomes
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which is the same dilaton potential associated to one defect species. This gives yet another
perspective on why deformations of the minimal string matched with JT gravity with defects
in the previous section.

The conventional normalization of the minimal model operator does not match with the
time-like Liouville exponential required in this derivation. Therefore the parameter ⌧n here is
rescaled with respect to the one used in the previous section. We analyze this in detail in the
next section.

9It would be interesting to understand from the dilaton-gravity perspective whether the exponent in the
dilaton potential has to be quantized at finite p. A more complete understanding of the minimal model as
time-like Liouville would very likely answer this question (see [30] for some progress in this direction).
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• Spectrum of defects:

JT Gravity with conical defects

In the JT limit hTni` becomes the JT disk + one conical
defect amplitude [Mertens/Turiaci 19,20]

Defect parameter ↵ controlled by n = p

2(1� ↵)

In the JT limit ↵ becomes continuous

20 / 27

p → ∞ (b → 0)
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• Deform the minimal string action by:

• Can we find the string equation of this theory? This amounts to solving the 
theory exactly (assuming it is dual to matrix integral)

Deformed Minimal String: Exact 
Solution
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• Deform the minimal string action by:

• Can we find the string equation of this theory? Yes! 
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• Deform the minimal string action by:

Deformed Minimal String: Exact 
Solution

• Bootstrap approach: Correlators in sphere should satisfy fusion rules of 
minimal model CFT

[Belavin Zamolodchikov 08][Moore Seiberg Staudacher 91]
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• Bootstrap approach: Correlators in sphere should satisfy fusion rules of 
minimal model CFT [Belavin Zamolodchikov 08][Moore Seiberg Staudacher 91]
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Deformation of the Minimal String

JT Gravity with conical defects

In the JT limit hTni` becomes the JT disk + one conical
defect amplitude [Mertens/Turiaci 19,20]
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• Belavin and Zamolodchikov also conjectured a solution for deformations 
with small , looks a little uglier:n

Staudacher [29]. In the next section we will make a connection between these deformations
of the minimal string and the conical deformations of pure JT gravity introduced in [24] and
[25].

We will focus on the following type of deformations by adding a combination of tachyon
operators
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⌧nTn to the minimal string action, where ⌧n are the couplings of each defor-

mation. Then the action of the deformed minimal string is, writing the deformation more
explicitly,
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where an = b(n+ 1)/2 is tuned such that the integrand is a marginal operator.
The outline of the derivation is the following. When computing tachyon correlation func-

tions on the sphere, the structure is strongly constrained by the minimal model fusion rules
and conformal invariance. For example the correlator hTnTn0iS2 = 0 unless n = n

0. On
the other hand, given a tree-level string equation one can derive these correlators by taking
derivatives with respect to the couplings ⌧n’s. Strikingly, solely the conditions derived from
the fusion rules completely fix the string equation. The final answer is given by

F(uMS) =
p

16⇡2

⇣
Pm

⇣
uMS



⌘
� Pm�2

⇣
uMS



⌘⌘

+
1X

L=1

m�1X

n1,...,nL=1

1

L!
⇧L

i=1�ni

✓
16⇡2

p2

◆L�1

P
(L�1)

m�1�
PL

i=1 ni

⇣
uMS



⌘
, (3.26)

where �n / ⌧n, with the prefactor determined below. We defined the Lth derivative of
the nth Legendre polynomial as P

(L)
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Pn(x) 5. The sum is over a set of L integers

1  ni  m � 1 where i = 1, . . . , L and L = 1, . . . ,1. As explained in Appendix A, the
Legendre polynomial is defined such that Pn(x) = 0 when n < 0. This implies that the sums
in the second term in the right-hand-side only contribute as long as m� 1�

P
i
ni � 0. This

constraint comes from analyzing resonance conditions between deformations.
The relation between the parameter �n associated to the deformation and the coupling in

the action ⌧n depends on the precise normalization of the minimal model operators. If we pick
the conventional normalization we obtain
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with �(x) ⌘ �(x)/�(1 � x). This relation comes from comparing the correction to the disk
partition function to linear order in the deformation computed from the string equation or

5Not to be confused with the associated Legendre polynomial which will not appear in this paper.

16

We rewrite the path integral now over ⇢ and �. We will call � the dilaton and define a new
two-dimensional metric

g = e
2⇢
ĝ. (3.11)

Notice this metric is not the same as the worldsheet metric in the minimal string. In terms
of this new metric and dilaton the minimal string can be rewritten as
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This has the most general two-derivative form of dilaton-gravity �
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R
�R + 2U(�), with

dilaton potential given by U(�) = 2µ sinh (2⇡b2�) (this potential was studied for di↵erent
reasons in [48]). This suggests that the minimal string is equal to a certain dilaton-gravity
theory and some checks were performed in [19]. This theory simplifies in the limit b ! 0
where the potential is linear and the theory becomes Jackiw-Teitelboim gravity
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Z
p
g �(R + 2⇤), (3.13)

where in the limit we keep ⇤ ⌘ 4⇡b2µ, which becomes the absolute value of the two-
dimensional cosmological constant, fixed and set to one. We will call this the pure JT gravity
limit or JT limit for short. We can check that this identification is true by comparing the
disk density of states [9]. We will extend this to the case of the minimal string deformed by
tachyon operators in section 4.

3.2 String equation

From the perspective of the loop equations [49, 50], all the information of a matrix integral
is encoded in the disk density of state ⇢0(E), which is also equivalent to giving the matrix
potential V (H). Higher genus contributions are determined from the topological recursion
[50, 51]; for an example on how this is done see [9]. Therefore, if two theories that are dual to
a matrix integral share the same disk density of states it means the theories are equivalent to
all orders in the genus expansion. Since we will work in the double-scaling limit we will ‘label’
the theory by ⇢0(E) instead, since the precise matrix potential depends on how we regularize
the theory away from the double-scaling limit.

It will be very useful when studying deformations to look at the matrix integral from a
di↵erent perspective: the string equation [10] (building on previous work [52, 53, 54, 55, 15]).
To leading order in the genus expansion the string equation has the following form

X

k

tku
k = x, (3.14)

where x is a dummy variable we can use to compute certain observables and tk are the KdV
couplings. We include t0 on the left-hand side so at the end of the day we will always fix
x = 0. This can be derived by taking the double-scaling limit of the orthogonal polynomial

13
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Notation: ,  ,   and p = 2m − 1 κ ∝ μ uMS = κ(1 +
8π2

p2
u) λ ∝ τ

- When  is large, only  remains, and we recover sharp defects, since 
we have a constrain
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• When  is large, only  remains, and we recover sharp defectsn L = 1

➡ We can take the large p limit of this formula and obtain a solution to 2D 
dilaton-gravity with generic defects!

➡ This works when the cut-and-glue prescription of SSS cannot be 
implemented

• Belavin and Zamolodchikov also conjectured a solution for deformations 
with small , looks a little uglier:n



• String equation from the minimal string
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• Outside the SSS framework (no geodesics) but still dual to matrix integral

• Includes merging  defects .L αL = 1 − L(1 − α)

• Non-trivial check: gives back JT when α → 1



• String equation

• A check: when we take  we should recover JTα = 1
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Gives back JT with a shift 
of energy

[Usatyuk, Weng, GJT]

Example: One generic defect
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• General solution for density of states

Solution of dilaton-gravity on disk
[Usatyuk, Weng, GJT]

General Potentials

Consider turning on multiple defects
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We can combine defects to create a more general potential
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• Using defects with  we can model 
more general dilaton potentials

α ∼ 1

General Potentials

Tune defect parameters to create interesting potentials in the
interior. Example: take ✓� << 1 and tune couplings
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Near the boundary � diverges and restores nearly AdS2
asymptotics
The density of states from our string equation agrees with the
semiclassical calculation of [Kitaev/Suh 17]

25 / 27

The exact formula matches with 
semiclassical limit

[Budd, wip]
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The exact formula matches with 
semiclassical limit

(There is a puzzle I don’t have time to mention)

[Usatyuk, Weng, GJT]

[Budd, wip]



Conclusions



• We solved pure 2D dilaton-gravity 

Dual of 2D dilaton-gravity with matter?

Relation between minimal string and SYK?

Finite cut-off AdS/ relation with ?TT̄

[Berkooz Isachenkov Narovlansky Torrents]

MM of JT from “triangulation” perspective? [Kazakov Staudacher Wynter]

We worked in AdS, what about flat space and dS?

[Iliesiu Kruthoff Verlinde GJT] [Stanford Yang]

• We argued that all these theories are dual to a matrix integral, in a holographic 
way

• Connection to minimal string

• Open Questions:


