Three-Dimensional WZW Model and the R-matrix of the Yangian

Meer Ashwinkumar

Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo

London Integrability Journal Club - Gong Show

This talk is based on-
M. Ashwinkumar, "Integrable Lattice Models and Holography" JHEP 02 (2021) 227 [arXiv:2003.08931]

3d "Chiral" WZW Model from 4d CS Theory

4 d Chern-Simons theory defined on $D \times \mathbb{C}$, where D is a disk, is

$$
\begin{equation*}
S=\frac{1}{\hbar} \int_{D \times \mathbb{C}} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right) \tag{2.1}
\end{equation*}
$$

where \mathcal{A} is the partial connection $\mathcal{A}=\mathcal{A}_{r} d r+\mathcal{A}_{\varphi} d \varphi+\mathcal{A}_{\bar{z}} d \bar{z}$. To have EOM free from boundary corrections, and to ensure gauge invariance, we impose $\mathcal{A}_{\bar{z}}=\left.0\right|_{\partial D}$.

Using $\mathcal{A}_{\bar{z}}=\left.0\right|_{\partial D}$, we find
$S=\frac{1}{2 \pi \hbar} \int d z \wedge d r \wedge d \varphi \wedge d \bar{z} \operatorname{Tr}\left(2 \mathcal{A}_{\bar{z}} \mathcal{F}_{r \varphi}-\mathcal{A}_{r} \partial_{\bar{z}} \mathcal{A}_{\varphi}+\mathcal{A}_{\varphi} \partial_{\bar{z}} \mathcal{A}_{r}\right)$.
Varying $\mathcal{A}_{\bar{z}}$ gives $\mathcal{F}_{r \varphi}=0$. Solved by

$$
\begin{equation*}
\mathcal{A}_{r}=-\partial_{r} g g^{-1}, \quad \mathcal{A}_{\varphi}=-\partial_{\varphi} g g^{-1} \tag{2.5}
\end{equation*}
$$

where $g: D \times \mathbb{C} \rightarrow G$.

Then, substituting into S, we obtain the 3d "chiral" WZW model

$$
\begin{align*}
S(g)= & \frac{1}{2 \pi \hbar} \int_{S^{1} \times \mathbb{C}} d \varphi \wedge d z \wedge d \bar{z} \operatorname{Tr}\left(\partial_{\varphi} g g^{-1} \partial_{\bar{z}} g g^{-1}\right) \\
& +\frac{1}{6 \pi \hbar} \int_{D \times \mathbb{C}} d z \wedge \operatorname{Tr}\left(d g g^{-1} \wedge d g g^{-1} \wedge d g g^{-1}\right) \tag{2.6}
\end{align*}
$$

This model has a $G \times G$ symmetry under

$$
\begin{equation*}
g(\varphi, z, \bar{z}) \rightarrow \tilde{\Omega}(\varphi, z) g \Omega(z, \bar{z}) \tag{2.7}
\end{equation*}
$$

$\tilde{\Omega}$ and Ω correspond, respectively, to the conserved currents $J_{\varphi}=-\frac{1}{\pi \hbar} \partial_{\varphi} g g^{-1}$ and $J_{\bar{z}}=-\frac{1}{\pi \hbar} g^{-1} \partial_{\bar{z}} g$, that obey $\partial_{\varphi} J_{\bar{z}}=0$ and $\partial_{\bar{z}} J_{\varphi}=0$.

We can use J_{φ} to derive a current algebra.

R-matrix from Local Boundary Operators

Consider Wilson lines along D ending on ∂D. These can be expressed in terms of local boundary operators since $\left.\mathcal{A}\right|_{D}$ is pure gauge.
E.g., for a Wilson line in representation R,

$$
\begin{equation*}
\mathcal{P} e^{\int_{t_{i}}^{t_{f}} \mathcal{A}}=g_{R}^{-1}\left(t_{f}\right) \mathcal{P} e^{\int_{t_{i}}^{t_{f}} \mathcal{A}^{\prime}} g_{R}\left(t_{i}\right) \tag{3.1}
\end{equation*}
$$

where $\mathcal{A}=g \mathcal{A}^{\prime} g^{-1}-d g g^{-1}$. Setting $\mathcal{A}^{\prime}=0$, we find that

$$
\begin{equation*}
\mathcal{P} e^{\int_{t_{i}}^{t_{f}}\left(-d g g^{-1}\right)}=g_{R}^{-1}\left(t_{f}\right) g_{R}\left(t_{i}\right) . \tag{3.2}
\end{equation*}
$$

We can thus compute correlation functions of Wilson lines via correlators of such boundary operators.

Let us try to retrieve the R-matrix, using

$$
\begin{aligned}
& \left\langle\mathcal{P} e^{\int_{\pi, z_{1}, \bar{z}_{1}}^{0, \bar{z}_{1}} \mathcal{L}_{R_{1}}} \otimes \mathcal{P} e^{\int_{3 \pi / 2, z_{2}, \bar{z}_{2}}^{\pi / 2, \bar{z}_{2}} \mathcal{A}_{R_{2}}}\right\rangle \\
= & \left\langle g_{R_{1}}^{-1}\left(0, z_{1}, \bar{z}_{1}\right) g_{R_{1}}\left(\pi, z_{1}, \bar{z}_{1}\right) \otimes g_{R_{2}}^{-1}\left(\pi / 2, z_{2}, \bar{z}_{2}\right) g_{R_{2}}\left(3 \pi / 2, z_{2}, \bar{z}_{2}\right)\right\rangle .
\end{aligned}
$$

Perpendicular Wilson lines on D.

Bulk R-matrix computation (to order \hbar) used perturbation theory around $\mathcal{A}=0$ and free field propagators.

So we consider perturbation theory around $g=\mathbb{1}$:

$$
g=e^{\phi_{a} T^{a}}=\mathbb{1}+\phi_{a} T^{a}+\ldots
$$

whereby the 3d WZW kinetic term is

$$
\begin{align*}
& \frac{1}{2 \pi \hbar} \int_{S^{1} \times \Sigma} d \varphi \wedge d z \wedge d \bar{z} \operatorname{Tr}\left(\partial_{\varphi} g g^{-1} \partial_{\bar{z}} g g^{-1}\right) \\
= & -\frac{1}{2 \pi \hbar} \int_{S^{1} \times \Sigma} d \varphi \wedge d z \wedge d \bar{z} \quad \phi^{a} \partial_{\varphi} \partial_{\bar{z}} \phi_{a}+\ldots \tag{3.3}
\end{align*}
$$

The propagator which obeys $\partial_{\varphi} \partial_{\bar{z}} \Delta^{a b}(x)=\delta^{a b} \delta(x)$ is given explicitly by

$$
\begin{equation*}
\Delta^{a b}(x)=\delta^{a b} \frac{1}{2 \pi i} \frac{1}{z} \widetilde{\Delta}_{\varphi} \tag{3.6}
\end{equation*}
$$

where,

$$
\begin{equation*}
\widetilde{\Delta}_{\varphi}=\frac{1}{2 \pi}\left(\sum_{k=1}^{\infty} \frac{e^{i k \varphi}}{i k}+\varphi+\sum_{k=-\infty}^{-1} \frac{e^{i k \varphi}}{i k}\right), \tag{3.7}
\end{equation*}
$$

defined with a branch cut. The two point function for ϕ is

$$
\begin{equation*}
\left\langle\phi^{a}(x) \phi^{b}(y)\right\rangle=-\pi i \hbar \Delta^{a b}(x-y) \tag{3.8}
\end{equation*}
$$

Using the 2 pt. function for ϕ we have

$$
\begin{aligned}
& \left\langle g_{R_{1}}^{-1}\left(0, z_{1}, \bar{z}_{1}\right) g_{R_{1}}\left(\pi, z_{1}, \bar{z}_{1}\right) \otimes g_{R_{2}}^{-1}\left(\pi / 2, z_{2}, \bar{z}_{2}\right) g_{R_{2}}\left(3 \pi / 2, z_{2}, \bar{z}_{2}\right)\right\rangle \\
= & \mathbb{1}+\frac{\hbar}{z_{1}-z_{2}}\left(\widetilde{\Delta}_{\frac{\pi}{2}}-\widetilde{\Delta}_{-\frac{\pi}{2}}\right) T_{R_{1}}^{a} \otimes T_{a R_{2}}+\mathcal{O}\left(\hbar^{2}\right) \\
= & \mathbb{1}+\frac{\hbar}{z_{1}-z_{2}} T_{R_{1}}^{a} \otimes T_{a R_{2}}+\mathcal{O}\left(\hbar^{2}\right),
\end{aligned}
$$

via

$$
\begin{equation*}
\widetilde{\Delta}_{\frac{\pi}{2}}=\frac{1}{2 \pi} \frac{\pi}{2}+\frac{1}{\pi}\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \ldots\right)=\frac{1}{2} \tag{3.10}
\end{equation*}
$$

and $\widetilde{\Delta}_{\frac{\pi}{2}}=-\frac{1}{2}$. We find precise agreement with the computation of Costello, Witten and Yamazaki.

Non-perpendicular Wilson lines on D.

Here, the four-point function is

$$
\begin{aligned}
& \left\langle g_{R_{1}}^{-1}\left(0, z_{1}\right) g_{R_{1}}\left(\pi, z_{1}\right) \otimes g_{R_{2}}^{-1}\left(\pi / 2-\delta, z_{2}\right) g_{R_{2}}\left(3 \pi / 2-\delta, z_{2}\right)\right\rangle \\
= & \mathbb{1}+\frac{\hbar}{z_{1}-z_{2}}\left(\widetilde{\Delta}_{\frac{\pi}{2}+\delta}-\widetilde{\Delta}_{-\frac{\pi}{2}+\delta}\right) T_{R_{1}}^{a} \otimes T_{R_{2} a}+O\left(\hbar^{2}\right),
\end{aligned}
$$

where

$$
\begin{equation*}
\tilde{\Delta}_{\frac{\pi}{2}+\delta}=\frac{\frac{\pi}{2}+\delta}{2 \pi}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(k \frac{\pi}{2}\right) \cos (k \delta)+\cos \left(k \frac{\pi}{2}\right) \sin (k \delta)}{k}, \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\Delta}_{-\frac{\pi}{2}+\delta}=\frac{-\frac{\pi}{2}+\delta}{2 \pi}-\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(k \frac{\pi}{2}\right) \cos (k \delta)-\cos \left(k \frac{\pi}{2}\right) \sin (k \delta)}{k} \tag{3.12}
\end{equation*}
$$

Single-valuedness of the propagators requires that $-\frac{\pi}{2}<\delta<\frac{\pi}{2}$, implying

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\sin \left(\frac{k \pi}{2}\right) \cos (k \delta)}{k}=\frac{\pi}{4} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\cos \left(\frac{k \pi}{2}\right) \sin (k \delta)}{k}=-\frac{\delta}{2} \tag{3.14}
\end{equation*}
$$

whereby

$$
\begin{align*}
\widetilde{\Delta}_{\frac{\pi}{2}+\delta} & =\frac{1}{2} \\
\widetilde{\Delta}_{-\frac{\pi}{2}+\delta} & =-\frac{1}{2} . \tag{3.15}
\end{align*}
$$

Once again, we have precise agreement with CWY.

This can be generalized further:

$g_{R_{2}}\left(\frac{3 \pi}{2}-\delta, z_{2}\right)$

$$
\begin{align*}
& \mathbb{1}+\frac{\hbar}{z_{1}-z_{2}}\left(\widetilde{\Delta}_{\frac{\pi}{2}-\alpha+\delta}-\widetilde{\Delta}_{-\frac{\pi}{2}-\alpha+\delta}\right) T_{R_{1}}^{a} \otimes T_{R_{2} a}+O\left(\hbar^{2}\right) \\
= & \mathbb{1}+\frac{\hbar}{z_{1}-z_{2}} T_{R_{1}}^{a} \otimes T_{R_{2} a}+O\left(\hbar^{2}\right), \tag{3.16}
\end{align*}
$$

$$
\begin{aligned}
& \mathbb{1}+\frac{\hbar}{z_{1}-z_{2}} \frac{1}{2}\left(\widetilde{\Delta}_{\frac{\pi}{2}+\beta-\rho}-\widetilde{\Delta}_{-\frac{\pi}{2}+\beta+\rho}+\widetilde{\Delta}_{\frac{\pi}{2}-\beta+\rho}-\widetilde{\Delta}_{-\frac{\pi}{2}-\beta-\rho}\right) T_{R_{1}}^{a} \otimes T_{R_{2} a} \\
& +O\left(\hbar^{2}\right) \\
= & \mathbb{1}+\frac{\hbar}{z_{1}-z_{2}} T_{R_{1}}^{a} \otimes T_{R_{2} a}+O\left(\hbar^{2}\right) .
\end{aligned}
$$

3d "Chiral" WZW Model from 4d CS Theory R-matrix from Local Boundary Operators

Current Algebra
Conclusion and Future Directions

$$
g_{R_{1}}\left(\pi-\beta-\alpha, z_{1}\right) \text { (}
$$

$$
\begin{align*}
& \quad g_{R_{2}}\left(\frac{3 \pi}{2}+\rho-\delta, z_{2}\right) \\
& \mathbb{1}+\frac{\hbar}{z_{1}-z_{2}} \frac{1}{2}\left(\widetilde{\Delta}_{\frac{\pi}{2}+\beta-\rho-\alpha+\delta}-\widetilde{\Delta}_{-\frac{\pi}{2}+\beta+\rho-\alpha+\delta}\right. \\
& \left.+\widetilde{\Delta}_{\frac{\pi}{2}-\beta+\rho-\alpha+\delta}-\widetilde{\Delta}_{-\frac{\pi}{2}-\beta-\rho-\alpha+\delta}\right) T_{R_{1}}^{a} \otimes T_{R_{2} a}+O\left(\hbar^{2}\right) \tag{3.18}\\
& =\mathbb{1}+\frac{\hbar}{z_{1}-z_{2}} T_{R_{1}}^{a} \otimes T_{R_{2} a}+O\left(\hbar^{2}\right) .
\end{align*}
$$

The OPEs of parallel Wilson lines in 4d CS do not have the same singular behaviour. This is reflected in the boundary dual:

$$
\begin{aligned}
& \left\langle g_{R_{1}}^{-1}\left(0, z_{1}, \bar{z}_{1}\right) g_{R_{1}}\left(3 \pi / 2, z_{1}, \bar{z}_{1}\right) \otimes g_{R_{2}}^{-1}\left(\pi / 2, z_{2}, \bar{z}_{2}\right) g_{R_{2}}\left(\pi, z_{2}, \bar{z}_{2}\right)\right\rangle \\
= & \mathbb{1}+O\left(\hbar^{2}\right) .
\end{aligned}
$$

The computation for crossed Wilson lines can be extended to higher order in \hbar :

$$
\begin{aligned}
& \left\langle g_{R_{1}}^{-1}\left(0, z_{1}\right) g_{R_{1}}\left(\pi, z_{1}\right) \otimes g_{R_{2}}^{-1}\left(\pi / 2, z_{2}\right) g_{R_{2}}\left(3 \pi / 2, z_{2}\right)\right\rangle \\
= & \mathbb{1}+\frac{\hbar}{z_{1}-z_{2}} T_{R_{1}}^{a} \otimes T_{R_{2} a} \\
& +\frac{\hbar^{2}}{4\left(z_{1}-z_{2}\right)^{2}}\left(T_{R_{1}}^{a} T_{R_{1}}^{b} \otimes T_{R_{2} a} T_{R_{2} b}+T_{R_{1}}^{a} T_{R_{1}}^{b} \otimes T_{R_{2} b} T_{R_{2} a}\right)+\mathcal{O}\left(\hbar^{3}\right)
\end{aligned}
$$

(3.20)

This holds for the boundary duals of arbitarily crossed Wilson lines, but only modulo the framing anomaly.

Finally we consider three crossed Wilson lines, which corresponds to the boundary correlator

$$
\begin{align*}
& \left\langle g_{R_{1}}^{-1}(0+\beta-\rho) g_{R_{1}}(\pi-\beta-\rho) \otimes g_{R_{2}}^{-1}\left(\frac{\pi}{2}-\delta-\alpha\right) g_{R_{2}}\left(\frac{3 \pi}{2}+\delta-\alpha\right)\right. \\
& \left.\quad \otimes g_{R_{3}}^{-1}(\pi-\gamma-\zeta) g_{R_{3}}(0+\gamma-\zeta)\right\rangle \tag{3.21}
\end{align*}
$$

We find

$$
\begin{aligned}
& \mathbb{1}+\frac{\hbar}{z_{1}-z_{2}} T_{R_{1}}^{a} \otimes T_{R_{2} a} \otimes \mathbb{1}+\frac{\hbar}{z_{1}-z_{3}} T_{R_{1}}^{a} \otimes \mathbb{1} \otimes T_{R_{3} a}+\frac{\hbar}{z_{2}-z_{3}} \mathbb{1} \otimes T_{R_{2}}^{a} \otimes T_{R_{3} a} \\
& +\frac{\hbar^{2}}{4\left(z_{1}-z_{2}\right)^{2}}\left(T_{R_{1}}^{a} T_{R_{1}}^{b} \otimes T_{R_{2} a} T_{R_{2} b} \otimes \mathbb{1}+T_{R_{1}}^{a} T_{R_{1}}^{b} \otimes T_{R_{2} b} T_{R_{2} a} \otimes \mathbb{1}\right) \\
& +\frac{\hbar^{2}}{4\left(z_{1}-z_{3}\right)^{2}}\left(T_{R_{1}}^{a} T_{R_{1}}^{b} \otimes \mathbb{1} \otimes T_{R_{3} a} T_{R_{3} b}+T_{R_{1}}^{a} T_{R_{1}}^{b} \otimes \mathbb{1} \otimes T_{R_{3} b} T_{R_{3} a}\right) \\
& +\frac{\hbar^{2}}{4\left(z_{2}-z_{3}\right)^{2}}\left(\mathbb{1} \otimes T_{R_{2}}^{a} T_{R_{2}}^{b} \otimes T_{R_{3} a} T_{R_{3} b}+\mathbb{1} \otimes T_{R_{1}}^{a} T_{R_{1}}^{b} \otimes T_{R_{2} b} T_{R_{2} a}\right) \\
& +\frac{\hbar^{2}}{2\left(z_{1}-z_{2}\right)\left(z_{1}-z_{3}\right)}\left(T_{R_{1}}^{a} T_{R_{1}}^{b} \otimes T_{R_{2} a} \otimes T_{R_{3} b}+T_{R_{1}}^{a} T_{R_{1}}^{b} \otimes T_{R_{2} b} \otimes T_{R_{3} a}\right) \\
& +\frac{\hbar^{2}}{2\left(z_{1}-z_{2}\right)\left(z_{2}-z_{3}\right)}\left(T_{R_{1}}^{a} \otimes T_{R_{2} a} T_{R_{2} b} \otimes T_{R_{3}}^{b}+T_{R_{1}}^{a} \otimes T_{R_{2}}^{b} T_{R_{2} a} \otimes T_{R_{3} b}\right) \\
& +\frac{\hbar^{2}}{2\left(z_{1}-z_{3}\right)\left(z_{2}-z_{3}\right)}\left(T_{R_{1}}^{a} \otimes T_{R_{2}}^{b} \otimes T_{R_{3} a} T_{R_{3} b}+T_{R_{1}}^{a} \otimes T_{R_{2}}^{b} \otimes T_{R_{3} b} T_{R_{3} a}\right) \\
& +O\left(\hbar^{3}\right) .
\end{aligned}
$$

In fact we get the same answer for both of the following configurations

We find agreement with

$$
\begin{equation*}
\widetilde{R}_{12} \widetilde{R}_{13} \widetilde{R}_{23}=\widetilde{R}_{23} \widetilde{R}_{13} \widetilde{R}_{12}, \tag{3.23}
\end{equation*}
$$

where

$$
\begin{align*}
\widetilde{R}_{i j}= & \mathbb{1}+\frac{\hbar}{z_{i}-z_{j}} T_{R_{i}}^{a} \otimes T_{R_{j} a} \otimes \mathbb{1} \\
& +\frac{\hbar^{2}}{4\left(z_{i}-z_{j}\right)^{2}}\left(T_{R_{i}}^{a} T_{R_{i}}^{b} \otimes T_{R_{j} a} T_{R_{j} b} \otimes \mathbb{1}+T_{R_{i}}^{a} T_{R_{i}}^{b} \otimes T_{R_{j} b} T_{R_{j a}} \otimes \mathbb{1}\right)+\mathcal{O}\left(\hbar^{3}\right), \tag{3.24}
\end{align*}
$$

upon using the identity

$$
\begin{equation*}
\frac{\left[T_{R_{1}}^{a}, T_{R_{1}}^{b}\right] \otimes T_{R_{2} a} \otimes T_{R_{3} b}}{\left(z_{1}-z_{2}\right)\left(z_{1}-z_{3}\right)}+\frac{T_{R_{1}}^{a} \otimes\left[T_{R_{2} a}, T_{R_{2}}^{b}\right] \otimes T_{R_{3} b}}{\left(z_{1}-z_{2}\right)\left(z_{2}-z_{3}\right)}+\frac{T_{R_{1}}^{a} \otimes T_{R_{2}}^{b} \otimes\left[T_{R_{3} a}, T_{R_{3} b}\right]}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{3}\right)}=0 \tag{3.25}
\end{equation*}
$$

Thus, the 6 pt . function is in agreement with the bulk correlation function of three Wilson lines up to order \hbar^{2}.

Current Algebra

To compute Poisson brackets of $J_{\varphi}=-\frac{1}{\pi \hbar} \partial_{\varphi} g g^{-1}$, we shall first take \bar{z} to be the time direction.

We compute the Poisson brackets $[X, Y]_{P B}$, and canonically quantize by making the replacement

$$
[X, Y]_{P B} \rightarrow-i \tilde{\hbar}[X, Y]+\mathcal{O}\left(\tilde{\hbar}^{2}\right)
$$

In this manner, we arrive at the current algebra (setting $\tilde{\hbar}=1$)

$$
\begin{aligned}
{\left[\operatorname{Tr} A J_{\varphi}(\varphi, z), \operatorname{Tr} B J_{\varphi}\left(\varphi^{\prime}, z^{\prime}\right)\right]=} & i \delta\left(\varphi-\varphi^{\prime}\right) \delta\left(z-z^{\prime}\right) \operatorname{Tr}[A, B] J_{\varphi}(\varphi, z) \\
& -i \frac{1}{\pi \hbar} \delta^{\prime}\left(\varphi-\varphi^{\prime}\right) \delta\left(z-z^{\prime}\right) \operatorname{Tr} A B \\
& +q . c .
\end{aligned}
$$

where $A, B \in \mathfrak{g}$.

Now let $z=\epsilon t+i \theta$, and compactify the θ direction to be valued in $[0,2 \pi]$, and take $\epsilon \rightarrow 0$. Expanding currents in Fourier modes along $S^{1}=\partial D$ and the θ direction we find

$$
\begin{align*}
{\left[\operatorname{Tr} A J_{\varphi}^{n, \tilde{n}}, \operatorname{Tr} B J_{\varphi}^{m, \tilde{m}}\right]=} & i \operatorname{Tr}[A, B] J_{\varphi}^{n+m, \tilde{n}+\tilde{m}} \\
& +\frac{4 \pi}{\hbar} n \delta_{m+n, 0} \delta_{\tilde{m}+\tilde{n}, 0} \operatorname{Tr} A B \tag{4.2}\\
& +q . c .
\end{align*}
$$

This is a two-toroidal Lie algebra. Hence the current algebra of the 3d "chiral" WZW model is an "analytically-continued" toroidal Lie algebra.

Conclusion and Future Directions

- We have shown that a 3d WZW model dual to 4d CS theory exists, that admits a novel toroidal Lie algebra.
- 3d WZW model can also be obtained via methods of Costello and Yamazaki, ${ }^{\dagger}$ and Delduc, Lacroix, Magro and Vicedo, \ddagger
\dagger. K. Costello, M. Yamazaki, Gauge Theory and Integrability, III, arXiv:1908.02289
\ddagger. F. Delduc, S. Lacroix, M. Magro, B. Vicedo. A unifying 2D action for integrable -models from 4D Chern-Simons theory arXiv:1909.13824

$$
\begin{aligned}
S= & \frac{i}{12 \pi} \int_{\Sigma \times \mathbb{C} P^{1}} \omega \wedge\left\langle\widehat{g}^{-1} d g, \widehat{g}^{-1} d \widehat{g} \wedge \widehat{g}^{-1} d \widehat{g}\right\rangle \\
& +\frac{i}{4 \pi} \int_{\Sigma \times \mathbb{C} P^{1}} d \omega \wedge\left\langle\widehat{g}^{-1} d \widehat{g}, \mathcal{L}\right\rangle-\frac{i}{4 \pi} \int_{\partial \Sigma \times \mathbb{C} P^{1}} \omega \wedge\left\langle\widehat{g}^{-1} d \widehat{g}, \mathcal{L}\right\rangle
\end{aligned}
$$

can be obtained from 4d CS via $A=-d \widehat{g} \widehat{g}^{-1}+\widehat{g} \mathcal{L} \widehat{g}^{-1}$, where \mathcal{L} is interpreted as a Lax connection.

- To obtain the 3d WZW model, set $\omega=d z$, and $\mathcal{L}=-\partial_{\varphi} \tilde{g} \widetilde{g}^{-1} d \varphi$ for a map $\widetilde{g} \rightarrow \partial \Sigma \times \mathbb{C} P^{1}$, where \mathcal{L}_{φ} obeys $\partial_{r} \mathcal{L}_{\varphi}=0$ and $\partial_{\bar{z}} \mathcal{L}_{\varphi}=0$ on-shell.
- Therefore the 3d WZW model can easily be generalized via more general choices of ω, and ought to be related to 2d integrable sigma models with boundary actions.
- Moreover, we expect that trigonometric and elliptic R-matrices can be obtained, with appropriate boundary conditions, e.g. the Manin triple boundary conditions.

