Exact g-functions

based on 2004.05071 with Shota Komatsu

João Caetano
(SCGP \& YITP)

London Integrability Journal Club
June 25, 2020

Functional Equations in Integrable Field Theories

Asymptotic
Bethe Ansatz (periodic)

$$
e^{i p_{i} L}=\prod_{j \neq i}^{N} S\left(p_{i}, p_{j}\right)
$$

$$
E=\sum_{j} \epsilon\left(p_{j}\right)+\mathcal{O}\left(e^{-L}\right)
$$

Finite volume: theory on a torus $(T=1 / R)$

$$
\begin{gathered}
Z \sim e^{-R E_{0}(L)} \\
E_{0}=L f
\end{gathered}
$$

Free energy density at finite temperature:
Thermodynamic Bethe Ansatz

Other quantities: form factors, correlation functions etc.
no such prescription: $\mathcal{O}(1)$ pieces of partition function, or partition function with insertions...

g-function

- Next to simplest quantity: simplest generalization of the analysis of the spectrum
- $\mathcal{O}(1)$ quantity exactly computable in any integrable field theory at finite volume.
- No TBA directly for the g-function.

g-function

$$
Z=\langle B| \int_{\longleftarrow R \longrightarrow} L \quad|B\rangle
$$

Closed string channel:

$$
Z=\sum_{\psi_{c}} e^{-R E_{\psi_{c}}(L)} \frac{\left\langle B \mid \psi_{c}\right\rangle\left\langle\psi_{c} \mid B\right\rangle}{\left\langle\psi_{c} \mid \psi_{c}\right\rangle}
$$

$$
\text { As } R \rightarrow \infty \quad Z \sim e^{-R E_{\Omega}}|g|^{2}
$$

$$
\text { g-function: } g \equiv \frac{\langle B \mid \Omega\rangle}{\sqrt{\langle\Omega \mid \Omega\rangle}}
$$

Also known as ground state degeneracy or boundary entropy

Open string channel:

$$
\begin{aligned}
& \longleftarrow R \longrightarrow \\
& \left.\underset{\sigma}{J_{\tau}}\right) L \\
& Z=\sum_{\psi_{o}} e^{-L E_{\psi_{o}}(R)} \\
& e^{-R E_{\Omega}}|g|^{2}=\lim _{R \rightarrow \infty} \sum_{\psi_{o}} e^{-L E_{\psi_{o}}(R)} \\
& \text { Thermal partition function in } \\
& \text { infinite volume at finite } \\
& \text { temperature } 1 / L
\end{aligned}
$$

Outline

- g-function as a Fredholm determinant from TBA
- Tracy-Widom TBA for Sinh-Gordon
- UV limit and Liouville FZZT states
- Separation of Variables
- Outlook

Exact g -function $=$ Fredholm Det

- [A. LeClair, G. Mussardo, H. Saleur and S. Skorik' ${ }^{\text {957]: }}$: First attempt.
- [F. Woynarovich'04] pointed out incompleteness of the previous and proposed modification.
- [P. Dorey, D. Fioravanti, C. Rim and R. Tateo ' ${ }^{\circ} 4$] proposed yet another modification to the previous.
- [B. Pozsgayıo] verified and re-derived previous result from a different approach.
- [I. Kostov, D. Serban and D.-L. Vu' 18] rigorously re-derived previous result.
- [I. Kostov' ${ }^{19]}$ re-re-derived previous result as an effective QFT whose path integral can be localized.
- JJiang, Komatsu, Vescovi' 20] offers yet another derivation.

Open string channel

Massive relativistic theory with single type particle:

$$
E=m \cosh u \quad p=m \sinh u
$$

$$
e^{2 i m \sinh \left(u_{i}\right) R}\left[\prod_{j \neq i}^{N} S\left(u_{i}-u_{j}\right) S\left(u_{i}+u_{j}\right)\right] \mathscr{R}_{a}\left(u_{i}\right) \mathscr{R}_{b}\left(u_{i}\right)=1
$$

Thermodynamic limit

$$
e^{2 i m \sinh \left(u_{i}\right) R}\left[\prod_{j \neq i}^{2 N} S\left(u_{i}-u_{j}\right)\right] \mathscr{R}_{a b}\left(u_{i}\right)=1
$$

Rapidity density:

$$
\begin{aligned}
2 \pi\left(\rho^{\mathrm{o}}(u)+\rho^{\mathrm{h}}(u)\right)=m \cosh u & -2 \pi \int_{-\infty}^{\infty} d v \mathscr{K}_{s}(u-v) \rho^{\mathrm{o}}(v)+\frac{\Theta_{a b}}{2 R} \\
\Theta_{a b}(u) & =\frac{1}{i} \frac{d}{d u} \log \left(\mathscr{R}_{a}(u) \mathscr{R}_{b}(u)\right)-\frac{1}{i} \frac{d}{d u} \log (S(2 u))-2 \pi \delta(u)
\end{aligned}
$$

Z at the saddle point:

$$
\log Z \simeq \frac{1}{4 \pi} \int_{-\infty}^{\infty} d u\left(2 m R \cosh u+\Theta_{a b}(u)\right) \quad \begin{aligned}
& \log \left(1+e^{-\epsilon(u)}\right) \\
& \text { R-independent }
\end{aligned}
$$

saddle point equation (closed system TBA):

$$
\epsilon(u)=m L \cosh (u)+\int_{-\infty}^{\infty} d v \mathscr{K}_{s}(u-v) \log \left(1+e^{-\epsilon(v)}\right)
$$

Open-closed channel match: g-function

$$
e^{-R E_{\Omega}}|g|^{2}=\lim _{R \rightarrow \infty} \sum_{\psi_{o}} e^{-L E_{\psi_{o}}(R)}
$$

$$
\log (g)=\frac{1}{4 \pi} \int_{-\infty}^{\infty} d u \Theta_{a b}(u) \log (1+Y(u))
$$

Incomplete!

- Assumption: $\sum_{\psi_{o}} \rightarrow \int R \Delta u d \rho_{0}(u)$
- Neglected fluctuations around the saddle point

Corrections

$$
\sum_{\psi_{o}}=\mathcal{N} \int R \Delta u d \rho_{\mathrm{o}}(u)
$$

Jacobian for the transformation of momentum quantum numbers to rapidities

$$
Z=\operatorname{Det}(1-\hat{G})^{1 / 2} \underbrace{\left.\operatorname{Demarovich}{ }^{\circ}+4\right]}_{\substack{\text { quadratic fluctuations } \\ \text { around the saddle point } \\ \operatorname{Det}\left(1-\hat{G}_{+}\right)^{-1}}}<\text { sF }
$$

Det $=$ Fredholm Determinants

Final expression

$$
\log g=\int_{0}^{\infty} \frac{d u}{2 \pi} \Theta(u) \log \left(1+e^{-\epsilon(u)}\right)+\frac{1}{2} \log \frac{\operatorname{Det}(1-\hat{G})}{\left(\operatorname{Det}\left(1-\hat{G}_{+}\right)\right)^{2}}
$$

$$
\hat{G}_{+} \cdot f(u):=\int_{0}^{\infty} \frac{d v}{2 \pi} \frac{\mathscr{K}_{+}(u, v)}{1+e^{\epsilon(v)}} f(v), \quad \hat{G} \cdot f(u):=\int_{-\infty}^{\infty} \frac{d v}{4 \pi} \frac{\mathscr{K}_{s}(u, v)}{1+e^{\epsilon(v)}} f(v)
$$

$$
\mathscr{K}_{+}(u, v)=\frac{1}{i}\left(\partial_{u} \log S(u, v)+\partial_{u} \log S(u,-v)\right)
$$

$$
\mathscr{K}_{s}(u, v)=\frac{1}{i}\left(\partial_{u} \log S(u, v)\right)
$$

Fredholm determinants

Representation as a multiple integral:

$$
\log \frac{\operatorname{Det}(1-\hat{G})}{\left(\operatorname{Det}\left(1-\hat{G}_{+}\right)\right)^{2}}=\sum_{n=1}^{\infty} \frac{1}{n} \int_{\mathbb{R}^{n}} \prod_{i=1}^{n} \frac{d u_{i}}{2 \pi} \frac{1}{1+e^{\epsilon\left(u_{i}\right)}} \mathscr{K}_{s}\left(u_{1}+u_{2}\right) \prod_{j=2}^{n} \mathscr{K}_{s}\left(u_{j}-u_{j+1}\right),
$$

Not very efficient, especially if one is aiming at generalizations:

- Nesting [P. Dorey, A. Lishman, C. Rim, R. Tateo' ${ }_{5} 5$, I. Kostov, D. Serban and D. L. L. Vu' ${ }^{\prime} 9$, Jiang, Komatsu, Vescovi' 20];
- Excited states II. Kostov, D. Serban and D.L. Vu' 19 , Jiang, Komatsu, Vescovi' 20$]$
- 3-point functions with two Giant Gravitons and a non-BPS single trace in $\mathcal{N}=4$ SYM given as a g-function: involves nesting, excited states etc. [Jiang, Komatsu, Vescovi' 2o]

Goal: derive a TBA to compute these Fredholm determinants

Towards functional equations

Relation between Fredholm determinants and TBA:

- $\mathcal{N}=2$ supersymmetric index in two dimensions [Cecotti, Fendley, Intriligator, Vafa' 92]
- The partition function of 2 d polymers [Zamolodchikov]
- Relations proven in Tracy-Widom '94
- S^{3} partition functions supersymmetric gauge theories [Calvo, Grassi, Hatsuda, Marino, Moriyama, Okuyama...]

Two layered system:

$$
\begin{aligned}
& \text { Solve standard TBA } \\
& \text { with source } m \cosh (u) \\
& \text { to get } Y(u) \equiv e^{-\epsilon(u)}
\end{aligned}
$$

Tracy-Widom TBA with source $Y(u)$ to get g

Simplest example: sinh-Gordon

One single type of particle of mass $m \quad \mathscr{L}=\frac{1}{4 \pi}(\partial \phi)^{2}+2 \mu \cosh (2 b \phi)$

$$
S(u, v)=\frac{\sinh (u-v)-i \sin (\pi p)}{\sinh (u-v)+i \sin (\pi p)} \quad p=b^{2}\left(1+b^{2}\right)^{-1}
$$

Consider self-dual point $b=1$, for which $\mathscr{K}_{s}(u, v) \sim \frac{1}{\cosh (u-v)}$
Boundary Sinh-Gordon (open string):

$$
\mathscr{L}=\left(\frac{1}{4 \pi}(\partial \phi)^{2}+2 \mu \cosh (2 b \phi)\right)+2 \mu_{B}\left(\left.\cosh \left(b \phi-b \phi_{0}\right)\right|_{x=0}+\left.\cosh \left(b \phi-b \phi_{0}\right)\right|_{x=R}\right)
$$

Also integrable, and reflection matrices are known

Class of kernels

Derivation in principle valid for any kernel of the type: $\quad K(u, v)=\frac{E(u) E(v)}{M(u)+M(v)}$

$$
\begin{aligned}
\operatorname{Use} \operatorname{Det}(\ldots)=e^{\operatorname{tr} \log (\ldots)} \quad \operatorname{Det}(1-z \hat{G}) & =\exp \left(-\sum_{n} \frac{z^{n}}{n} \int \prod_{i} d u_{i} \frac{\mathscr{K}_{s}\left(u_{i}, u_{i+1}\right)}{1+e^{\epsilon\left(u_{i}\right)}}\right) \\
& =\exp \left(-\sum_{n} \frac{z^{n}}{n} \int \prod_{i} d u_{i} K_{s}\left(u_{i}, u_{i+1}\right)\right) \\
& \equiv \exp \left(-\sum_{n=1}^{\infty} \frac{z^{n}}{n} \operatorname{tr} K_{s}^{*}\right)
\end{aligned}
$$

$$
K_{s}(u, v) \equiv \frac{\mathscr{K}_{s}(u, v)}{\sqrt{1+e^{\epsilon(u)}} \sqrt{1+e^{\epsilon(v)}}}
$$

$$
E(u) \equiv \frac{\sqrt{2} e^{u}}{\sqrt{1+e^{\epsilon(u)}}} \quad M(u) \equiv e^{2 u}
$$

In the case of $K_{+}: \quad E(u) \equiv \frac{\sqrt{2} \cosh u}{\sqrt{1+e^{\epsilon(u)}}} \quad M(u) \equiv \cosh (2 u)$

Derivation of Tracy-Widom TBA

Start by deriving a recursion relation for $K^{* n}$

$$
K(u, v)=\frac{E(u) E(v)}{M(u)+M(v)}
$$

Interpret $E(u)$ as a sort of "wave-function": $\quad\langle u \mid E\rangle=E(u)$
Define \hat{M} as an operator: $\quad \hat{M}|u\rangle=M(u)|u\rangle$
Then the kernel becomes: $\quad \hat{M} \hat{K}+\hat{K} \hat{M}=|E\rangle\langle E|$

For higher powers of $\hat{K} \quad \hat{M} \hat{K}^{2}-\hat{K}^{2} \hat{M}=(\hat{M} \hat{K}+\hat{K} \hat{M}) \hat{K}-\hat{K}(\hat{M} \hat{K}+\hat{K} \hat{M})$

$$
=|E\rangle\langle E| \hat{K}-\hat{K}|E\rangle\langle E|
$$

Recursively:

$$
\hat{M} \hat{K}^{n}-(-1)^{n} \hat{K}^{n} \hat{M}=\sum_{l=0}^{n-1}(-1)^{l} \hat{K}^{l}|E\rangle\langle E| \hat{K}^{n-1-l}
$$

$$
\hat{M} \hat{K}^{n}-(-1)^{n} \hat{K}^{n} \hat{M}=\sum_{l=0}^{n-1}(-1)^{l} \hat{K}^{l}|E\rangle\langle E| \hat{K}^{n-1-l}
$$

Sandwich both sides with $\langle u|$ and $|v\rangle$

$$
K^{* n}(u, v)=\frac{E(u) E(v)}{M(u)+(-1)^{n-1} M(v)} \sum_{l=0}^{n-1}(-1)^{l}\langle\underbrace{\left.u\left|\hat{K}^{l}\right| E\right\rangle}_{\equiv \phi_{l}(u)}\langle\underbrace{\left.E\left|\hat{K}^{n-l-1}\right| v\right\rangle}_{\equiv \phi_{n-l-1}(v)}
$$

With $\quad \phi_{j}(u)=\frac{1}{E(u)} \int d v K(u, v) E(v) \phi_{j-1}(v) \quad \phi_{0}(u)=1$

Baxter-like equations

$$
\phi_{j}(u)=\frac{1}{E(u)} \int d v K(u, v) E(v) \phi_{j-1}(v) \quad \phi_{0}(u)=1
$$

Use $\frac{1}{\cosh \left(u+\frac{i(\pi-\epsilon)}{2}\right)}+\frac{1}{\cosh \left(u-\frac{i(\pi-\epsilon)}{2}\right)}=2 \pi \delta(u)$

To get something like

$$
\tilde{\phi}_{j}^{++}+\tilde{\phi}_{j}^{-}=\frac{2 \pi}{1+e^{\epsilon}} \tilde{\phi}_{j-1} \quad \tilde{\phi}_{j}=\frac{\sqrt{1+e^{\epsilon(u)}}}{\sqrt{2}} E(u) \phi_{j}
$$

Sum on both sides $\sum_{j} z^{j}(\ldots) \quad \begin{aligned} & P^{++}+P^{--}=2 \pi v z Q \\ & Q^{++}+Q^{--}=2 \pi v z P\end{aligned}$
$P(u) \propto \sum_{j=0}^{\infty} z^{2 j+1} \phi_{2 j+1}(u)$
$v=\left(1+e^{\epsilon}\right)^{-1 / 2}\left(1+e^{\epsilon^{++}}\right)^{-1 / 2}$
$Q(u) \propto \sum_{j=0}^{\infty} z^{2 j} \phi_{2 j}(u)$

Back to the kernel

Split the kernel into odd \& even parts:

$$
\hat{R}_{\mathrm{o}} \equiv \hat{K}\left(I-z^{2} \hat{K}^{2}\right)^{-1}, \quad \hat{R}_{\mathrm{e}} \equiv \hat{K}^{2}\left(I-z^{2} \hat{K}^{2}\right)^{-1}
$$

The kernels can then be expressed in terms of the Baxter functions Q, P

$$
R_{\mathrm{o}}(u, v)=\frac{Q(u) Q(v)-P(u) P(v)}{M(u)+M(v)} \quad R_{\mathrm{e}}(u, v)=\frac{Q(u) P(v)-Q(v) P(u)}{M(u)-M(v)}
$$

Goal: derive a closed system of equations for R_{o} and R_{e}.

Closed system of equations

R_{o} and R_{e} only: no closed system of equations
Need one additional function η

$$
\begin{aligned}
& \eta(u)-i \equiv-i \frac{\left(Q^{+}-P^{+}\right)\left(Q^{-}+P^{-}\right)}{E^{+} E^{-}} \\
& R_{\mathrm{o}}(u)=\lim _{v \rightarrow u} \frac{Q(u) Q(v)-P(u) P(v)}{M(u)+M(v)} \\
& \text { Baxter-like equations } \\
& R_{\mathrm{e}}(u)=\lim _{v \rightarrow u} \frac{Q(u) P(v)-Q(v) P(u)}{M(u)-M(v)}
\end{aligned}
$$

‘Y-system" for TracyWidom TBA

$$
\text { For } \mathscr{K}_{s}:
$$

$$
\log \left(1+\eta^{2}\right)=\log \left(1+e^{\epsilon^{+}}\right)+\log \left(1+e^{\epsilon^{-}}\right)+\log R_{\mathrm{e}}^{+}+\log R_{\mathrm{e}}^{-}
$$

$$
\begin{aligned}
\frac{2 i \eta^{\prime}}{\eta^{2}+1} & =2 i \arctan (\eta)^{\prime}=\frac{R_{\mathrm{o}}^{+}}{R_{\mathrm{e}}^{+}}-\frac{R_{\mathrm{o}}^{-}}{R_{\mathrm{e}}^{-}} \\
\eta^{+}+\eta^{-} & =2 \pi R_{\mathrm{e}}(u)
\end{aligned}
$$

Invert to obtain Tracy-Widom TBA:

For \mathscr{K}_{s} :

$$
\begin{aligned}
& \eta_{s}=2 \int_{-\infty}^{\infty} d v \frac{R_{\mathrm{e} s}(v)}{\cosh (2(u-v))} \\
& R_{\mathrm{es}}(u)=\frac{1}{1+e^{\epsilon(u)}} \exp \left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} d v \frac{\log \left(1+\eta_{s}^{2}(v)\right)}{\cosh (2(u-v))}\right) \\
& R_{\mathrm{os} s}(u)=\frac{R_{\mathrm{es}}(u)}{\pi} \int_{-\infty}^{\infty} d v v \arctan \left(\eta_{s}(v)\right) \\
& \cosh (2(u-v))^{2}
\end{aligned}
$$

For \mathscr{K}_{+}:

$$
\begin{aligned}
& \eta_{+}=4 \mathrm{P} \cdot \mathrm{~V} \cdot \int_{-\infty}^{\infty} d v \frac{\operatorname{coth}(2 v) R_{\mathrm{e}+}(v)}{\cosh (2(u-v))} \\
& R_{\mathrm{e}+}(u)=\frac{\cosh (u)^{2}}{\cosh (2 u)\left(1+e^{\epsilon(u)}\right)} \exp \left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} d v \frac{\log \left(1+\eta_{+}^{2}(v)\right)}{\cosh (2(u-v))}\right) \\
& R_{\mathrm{o}+}(u)=\frac{2 R_{\mathrm{e}+}(u) \operatorname{coth}(2 u)}{\pi} \int_{-\infty}^{\infty} d v \arctan \left(\eta_{+}(v)\right) \\
& \cosh (2(u-v))^{2}
\end{aligned}
$$

Solving TBA

$$
\begin{aligned}
\eta_{s} & =2 \int_{-\infty}^{\infty} d v \frac{R_{\mathrm{e} s}(v)}{\cosh (2(u-v))} \\
R_{\mathrm{e} s}(u) & =\frac{1}{1+e^{\epsilon(u)}} \exp \left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} d v \frac{\log \left(1+\eta_{s}^{2}(v)\right)}{\cosh (2(u-v))}\right) \\
R_{\mathrm{os} s}(u) & =\frac{R_{\mathrm{e} s}(u)}{\pi} \int_{-\infty}^{\infty} d v \frac{\arctan \left(\eta_{s}(v)\right)}{\cosh (2(u-v))^{2}}
\end{aligned}
$$

Expand in $z: \quad \eta=\sum_{k=1}^{\infty} \eta^{(k)} z^{k} \quad R_{\mathrm{e}}=\sum_{k=0}^{\infty} R_{\mathrm{e}}^{(2 k)} z^{2 k} \quad R_{\mathrm{o}}=\sum_{k=0}^{\infty} R_{\mathrm{o}}^{(2 k+1)} z^{2 k+1}$
Easy to solve iteratively: $\quad e^{-\epsilon} \rightarrow R_{e}^{(0)} \rightarrow \eta^{(1)} \rightarrow R_{o}^{(1)} \rightarrow R_{e}^{(2)} \rightarrow \ldots$

$$
\begin{array}{rlrl}
\operatorname{tr} K^{* 2 n+1} & =\frac{1}{\pi^{2 n+1}} \int d u R_{\mathrm{e}}^{(2 n)}(u) & & \text { Easy to compute arbitrarily high } \\
\operatorname{tr} K^{* 2 n} & =\frac{1}{\pi^{2 n}} \int d u R_{\mathrm{o}}^{(2 n-1)}(u) & \begin{array}{l}
\text { powers of } n \text { in contrast with mult } \\
\text { nested integrals. }
\end{array}
\end{array}
$$

Physical limits

CFT or UV limit of sinh-Gordon: Liouville CFT
Open string Lagrangian defined on a strip

$L=\int_{0}^{R} d x\left(\frac{1}{4 \pi}(\partial \phi)^{2}+2 \mu \cosh (2 b \phi)\right)+2 \mu_{B}\left(\left.\cosh (b \phi)\right|_{x=0}+\left.\cosh (b \phi)\right|_{x=R}\right)$

Rescale width of the strip to 2π

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} d x\left(\frac{1}{4 \pi}(\partial \phi)^{2}+\mu\left(\frac{R}{2 \pi}\right)^{2+2 b^{2}}\left(e^{2 b \phi}+e^{-2 b \phi}\right)\right) \\
& +\mu_{B}\left(\frac{R}{2 \pi}\right)^{1+b^{2}}\left(\left.\left(e^{b \phi}+e^{-b \phi}\right)\right|_{x=0}+\left.\left(e^{b \phi}+e^{-b \phi}\right)\right|_{x=2 \pi}\right)
\end{aligned}
$$

UV limit $R \rightarrow 0$, neglect one of the exponentials: boundary Liouville

Closed string channel: g-function in UV \leftrightarrow disc one point function in boundary Liouville

States in Liouville/Sinh-Gordon

In Liouville

Consider the classical limit $b \rightarrow 0$
Consider a field configuration constant in space $\phi(t, x)=\phi_{0}(t)$ (minisuperspace)
States characterized by canonical momentum P conjugate to ϕ_{0}

In Sinh-Gordon

Same approximation but $P=P(L)$
In the UV limit, ground state energy

$$
E(L)=-\pi c_{\mathrm{eff}} / 6 L \rightarrow \text { CFT beheviour with } c_{e f f} \rightarrow c_{L}=1-24 P^{2}
$$

Close to it, we take

$$
c_{\text {eff }}=1-24 P(L)^{2}+\mathcal{O}\left(L^{2}\right) \underset{\text { [Zamolodechikov, Zamolodchikov 95] }}{\leftarrow \text { define } P(L) \text { in terms of } c_{\text {eff }}}
$$

Schrödinger equation

Sinh-Gordon ground-state wavefunction in minisuperspace:

$$
\left(-\frac{1}{2} \frac{d^{2}}{d \phi_{0}^{2}}+4 \pi \mu\left(\frac{L}{2 \pi}\right)^{2} \cosh \left(2 b \phi_{0}\right)-2 P^{2}\right) \Psi_{P}\left(\phi_{0}\right)=0
$$

Liouville wave-function

Bessel K

Compatibility \rightarrow quantization condition:

$$
S_{\mathrm{cl}}(P)^{2}\left(\frac{L}{2 \pi}\right)^{-8 i P / b}=1
$$

Classical reflection matrix

$$
P \sim-\frac{1}{\log (L / 2 \pi)}+\mathcal{O}\left(\frac{1}{\log (L / 2 \pi)^{2}}\right) \quad \text { as } L \rightarrow 0
$$

Ground state of Sinh-Gordon in CFT limit \leftrightarrow Liouville $P=0$ state

Liouville Boundary Data

Compare with one-point function of the boundary Liouville (also known as FZZT states)

$$
\left\langle B_{s} \mid \psi_{P}\right\rangle_{\mathrm{L}}=\left(\pi \mu \gamma\left(b^{2}\right)\right)^{-i P / b} \Gamma(1+2 i b P) \Gamma(1+2 i P / b) \frac{\cos (2 \pi P s)}{i P}
$$

Need to subtract the pole! Back to the classical limit: IR singularity!

$$
\left\langle B_{s} \mid \Psi_{P}\right\rangle_{\text {shG }}^{\mathrm{cl}}=\int_{\text {Bulk wave-function }}^{\int_{-\infty}^{\infty} d \phi_{0} \Psi_{P}\left(\phi_{0}\right) \varphi_{B}\left(\phi_{0}\right)} \underset{\substack{ \\\varphi_{B}\left(\phi_{0}\right)=\exp \left(-2 \mu_{B} \cosh \left(b \phi_{0}\right)\right)}}{\text { Boundary wave-function: }}
$$

Split integration regions, and approximate each region by Liouville:

$$
\begin{aligned}
&\left\langle B_{s} \mid \Psi_{P}\right\rangle_{\mathrm{shG}}^{\mathrm{cl}} \simeq\left\langle B_{s} \mid \psi_{-P}\right\rangle_{\mathrm{L}}^{\mathrm{cl}}+\left\langle B_{s} \mid \psi_{P}\right\rangle_{\mathrm{L}}^{\mathrm{cl}} \begin{array}{l}
\frac{i}{2 P}\left(S_{\mathrm{cl}}(P)-\frac{1}{S_{\mathrm{cl}}(P)}\right)+\mathcal{O}(L)
\end{array} \\
& \begin{array}{l}
\text { Independent of } \\
\text { boundary parameter }
\end{array} \\
& U_{s_{1}, s_{0}}(P) \equiv \frac{\left\langle B_{s_{1}} \mid \Psi_{P}\right\rangle_{\mathrm{shG}}-\left\langle B_{s_{0}} \mid \Psi_{P}\right\rangle_{\mathrm{shG}}}{\sqrt{\left\langle\Psi_{P} \mid \Psi_{P}\right\rangle}} \begin{array}{l}
\text { Reference one- } \\
\text { point function }
\end{array}
\end{aligned}
$$

Comparison with Liouville

Solve Tracy-Widom TBA in the UV limit and compare with

$$
U_{s_{1}, s_{0}}(P)=\frac{1}{\sqrt{\pi}}\left(\left\langle B_{s_{1}} \mid \psi_{-P}\right\rangle_{\mathrm{L}}+\left\langle B_{s_{1}} \mid \psi_{P}\right\rangle_{\mathrm{L}}\right)-\frac{1}{\sqrt{\pi}}\left(\left\langle B_{s_{0}} \mid \psi_{-P}\right\rangle_{\mathrm{L}}+\left\langle B_{s_{0}} \mid \psi_{P}\right\rangle_{\mathrm{L}}\right)
$$

For any boundary parameters:

Should be useful to study excited states and test [Kostov, Serban, Vu' 19; Jiang, Komatsu, Vescovi' 20]

Separation of Variables

Lukyanov found a formula for one-point function in sinh-Gordon at finite volume. [Lukyanov' or]

For the identity operator:

$$
\begin{array}{r}
\langle\Omega \mid \Omega\rangle=\lim _{N \rightarrow \infty} \mathscr{J}_{N} \\
\mathscr{J}_{N} \equiv \frac{1}{(2 N+1)!} \int_{-\infty}^{\infty} \prod_{k=-N}^{N} \frac{d \theta_{k}\left(Q\left(\theta_{k}\right)\right)^{2}}{2 \pi} \prod_{-N \leq j<k \leq N} \Delta\left(\theta_{j}, \theta_{k}\right) \\
1+e^{-\epsilon(u)}=Q^{++}(u) Q^{--(u)} \begin{array}{r}
\Delta\left(\theta_{j}, \theta_{k}\right) \equiv\left(2 \sinh \nu\left(\theta_{j}-\theta_{k}\right)\right)\left(2 \sinh \tilde{\nu}\left(\theta_{j}-\theta_{k}\right)\right) \\
\nu \equiv 1+b^{2} \quad \tilde{\nu} \equiv 1+b^{-2}
\end{array}
\end{array}
$$

From the Vandermonde determinant formula we can rewrite

$$
\langle\Omega \mid \Omega\rangle=\lim _{N \rightarrow \infty} \operatorname{det}\left[M_{j, k}\right]_{-N \leq j, k \leq N} \quad M_{j, k}=\int_{-\infty}^{\infty} \frac{d \theta}{2 \pi}(Q(\theta))^{2} e^{2(\nu k+\tilde{\nu} j) \theta}
$$

For parity symmetric Q-function $Q(-\theta)=Q(\theta)$, determinant factorizes

$$
\operatorname{det} M=\frac{1}{2} \operatorname{det} M^{-} \operatorname{det} M^{+} \quad \begin{array}{ll}
\left(M^{-}\right)_{s, t}=2 \int_{-\infty}^{\infty} \frac{d \theta}{2 \pi} Q(\theta) Q(-\theta) \sinh (2 \nu s \theta) \sinh (2 \tilde{u} t \theta) & (1 \leq s, t \leq N) \\
\left(M^{+}\right)_{s, t}=2 \int_{-\infty}^{\infty} \frac{d \theta}{2 \pi} Q(\theta) Q(-\theta) \cosh (2 \nu s \theta) \cosh (2 \tilde{\nu} t \theta) & (0 \leq s, t \leq N)
\end{array}
$$

Analogy: Gaudin norm for parity symmetric states $\operatorname{det} G=\operatorname{det} G^{+} \operatorname{det} G^{-}$

Conjecture:

$\langle B \mid \Omega\rangle \propto \operatorname{det} M^{-}$

$$
\begin{aligned}
& \frac{\sqrt{\operatorname{Det}(1-\hat{G})}}{\operatorname{Det}\left(1-\hat{G}_{+}\right)}=\lim _{N \rightarrow \infty} \mathcal{N} \times \frac{\operatorname{det} M^{-}}{\sqrt{\operatorname{det} M}}=\lim _{N \rightarrow \infty} \mathcal{N} \times \frac{\overline{\mathscr{J}}_{N}}{\sqrt{\mathscr{J}_{N}}} \\
& \overline{\mathscr{J}}_{N}=\frac{1}{N!} \int_{-\infty}^{\infty}\left(\prod_{k=1}^{N} \frac{d \theta_{k} \sinh \left(2 \nu \theta_{k}\right) \sinh \left(2 \tilde{\nu} \theta_{k}\right) Q\left(\theta_{k}\right) Q\left(-\theta_{k}\right)}{\pi}\right) \prod_{1 \leq j, k \leq N}{\bar{\Delta}\left(\theta_{j}, \theta_{k}\right)}_{\pi}^{\text {with }} \\
& \bar{\Delta}\left(\theta_{j}, \theta_{k}\right) \equiv\left[2 \cosh \left(2 \nu \theta_{j}\right)-2 \cosh \left(2 \nu \theta_{k}\right)\right]\left[2 \cosh \left(2 \tilde{\nu} \theta_{j}\right)-2 \cosh \left(2 \tilde{\nu} \theta_{k}\right)\right] \\
& =\left(\sinh ^{2}\left(\nu \theta_{j}\right)-\sinh ^{2}\left(\nu \theta_{k}\right)\right)\left(\sinh ^{2}\left(\tilde{\nu} \theta_{j}\right)-\sinh ^{2}\left(\tilde{\nu} \theta_{k}\right)\right)
\end{aligned}
$$

- Selection rule: det M^{-}vanishes if the Q-function is not parity-symmetric, $Q(\theta) \neq Q(-\theta)$. (Boundary state is annihilated by the action of odd conserved charger under parity)
- Still need to fix \mathcal{N}
- Same trick works in XXX spin-chain: from the norm one can get SoV representation for \langle Néel $\mid \mathbf{u}\rangle$
- Does this trick works for higher-rank cases?

Future directions

- Extend to more general types of kernels and theories with bound-states/internal degrees of freedom.
- $\mathcal{N}=4$ SYM g-function.
- Physical interpretation of the equations
- Analytically solution of these equations in UV/ IR?
- Excited States? Dorey-Tateo analytic continuation for Tracy-Widom TBA? Use Liouville to test.
- Sharpen/improve SoV conjecture. Guess higher-rank overlaps from norms?
- Applications in the computation of S^{3} partition function of superconformal Chern-Simons with OSp gauge groups, where \mathscr{K}_{+}appear.

Thank you

