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Functional Equations  
in Integrable Field Theories 

eipiL =
N

∏
j≠i

S(pi, pj)
Asymptotic 

Bethe Ansatz 
(periodic)

E = ∑
j

ϵ(pj) +𝒪(e−L)

Other quantities: form factors, correlation functions etc. 
no such prescription:  pieces of partition function, or partition function with insertions…𝒪(1)

Finite volume: theory on a torus ( )T = 1/R

E0 = L f
Z ∼ e−RE0(L)

Saddle point :R → ∞

Swap space  time:↔

Free energy density at finite temperature: 
Thermodynamic Bethe Ansatz

R

L



g-function

- Next to simplest quantity: simplest generalization of the analysis of the 
spectrum 

-  quantity exactly computable in any integrable field theory at finite 
volume. 

- No TBA directly for the g-function.

𝒪(1)



g-function
⟨B | |B⟩

R
LZ =

Closed string channel: σ

τ

Z = ∑
ψc

e−REψc(L) ⟨B |ψc⟩⟨ψc |B⟩
⟨ψc |ψc⟩

Z ∼ e−REΩ |g |2As R → ∞ g ≡
⟨B |Ω⟩
⟨Ω |Ω⟩

g-function:

Also known as ground state degeneracy or boundary entropy



Open string channel:
τ

σ

Z = ∑
ψo

e−LEψo(R)

e−REΩ |g |2 = lim
R→∞ ∑

ψo

e−LEψo(R)

Thermal partition function in 
infinite volume at finite 

temperature 1/L

L
R



Outline

• g-function as a Fredholm determinant from TBA 

• Tracy-Widom TBA for Sinh-Gordon 

• UV limit and Liouville FZZT states 

• Separation of Variables 

• Outlook



Exact g-function = Fredholm Det
• [A. LeClair, G. Mussardo, H. Saleur and S. Skorik ’95]: First attempt. 

• [F. Woynarovich ’04] pointed out incompleteness of the previous and proposed modification. 

• [P. Dorey, D. Fioravanti, C. Rim and R. Tateo  ’04] proposed yet another modification to the 
previous. 

• [B. Pozsgay’10] verified and re-derived previous result from a different approach. 

• [I. Kostov, D. Serban and D.-L. Vu ’ 18] rigorously re-derived previous result. 

• [I. Kostov ’ 19] re-re-derived previous result as an effective QFT whose path integral can be localized. 

• [Jiang, Komatsu, Vescovi’ 20] offers yet another derivation. 



Lτ

σ

R

ℛL(−u) = ℛR(u) ℛR(u)

Open string channel

R

Parity

e2im sinh(ui)R
N

∏
j≠i

S(ui − uj)S(ui + uj) ℛa(ui)ℛb(ui) = 1

Massive relativistic theory with single type particle :
E = m cosh u p = m sinh u

ui > 0

e2im sinh(ui)R
2N

∏
j≠i

S(ui − uj) ℛab(ui) = 1

ℛab(u) ≡ ℛa(u) ℛb(u) S(2u)

u2N−j = − uj



Thermodynamic limit
e2im sinh(ui)R

2N

∏
j≠i

S(ui − uj) ℛab(ui) = 1

Rapidity density: 2π(ρo(u) + ρh(u)) = m cosh u − 2π∫
∞

−∞
dv 𝒦s(u − v)ρo(v) +

Θab

2R

Θab(u) =
1
i

d
du

log (ℛa(u)ℛb(u)) −
1
i

d
du

log(S(2u)) − 2πδ(u)

log Z ≃
1

4π ∫
∞

−∞
du (2mR cosh u + Θab(u)) log(1 + e−ϵ(u))

ϵ(u) = mL cosh(u) + ∫
∞

−∞
dv 𝒦s(u − v)log(1 + e−ϵ(v))

 at the saddle point:Z

saddle point equation (closed 
system TBA):

R-independent



Open-closed channel match: g-function 
e−REΩ |g |2 = lim

R→∞ ∑
ψo

e−LEψo(R)

log(g) =
1

4π ∫
∞

−∞
du Θab(u)log(1 + Y(u))

-  Assumption:  

- Neglected fluctuations around the saddle point

∑
ψo

→ ∫ RΔu dρo(u)

Incomplete!
[LeClair, Mussardo, Saleur, Skorik ’95]



Corrections

∑
ψo

= 𝒩∫ RΔu dρo(u)

Jacobian for the transformation of 
momentum quantum numbers to rapidities

Z = Det(1 − Ĝ)1/2 Det(1 − Ĝ+)−1 e−RFsaddle

quadratic fluctuations 
around the saddle point 

Fredholm DeterminantsDet =
[Woynarovich ’ 04]



Final expression

Ĝ+ ⋅ f(u) := ∫
∞

0

dv
2π

𝒦+(u, v)
1 + eϵ(v)

f(v) , Ĝ ⋅ f(u) := ∫
∞

−∞

dv
4π

𝒦s(u, v)
1 + eϵ(v)

f(v)

log g = ∫
∞

0

du
2π

Θ(u)log(1 + e−ϵ(u)) +
1
2

log
Det(1 − Ĝ)

(Det(1 − Ĝ+))
2 .

𝒦+(u, v) =
1
i

(∂u log S(u, v) + ∂u log S(u, − v)) 𝒦s(u, v) =
1
i

(∂u log S(u, v))



Fredholm determinants

log
Det(1 − Ĝ)

(Det(1 − Ĝ+))
2 =

∞

∑
n=1

1
n ∫ℝn

n

∏
i=1

dui

2π
1

1 + eϵ(ui)
𝒦s(u1 + u2)

n

∏
j=2

𝒦s(uj − uj+1),

Representation as a multiple integral:

Not very efficient, especially if one is aiming at generalizations:

- Nesting [P. Dorey,  A. Lishman,  C. Rim, R. Tateo ’ 05, I. Kostov, D. Serban and D.-L. Vu ’ 19, Jiang, Komatsu, Vescovi ’ 20]; 
- Excited states [I. Kostov, D. Serban and D.-L. Vu ’ 19, Jiang, Komatsu, Vescovi ’ 20] 
- 3-point functions with two Giant Gravitons and a non-BPS single trace in  SYM given as 

a g-function: involves nesting, excited states etc. [Jiang, Komatsu, Vescovi ’ 20]

𝒩 = 4

Goal: derive a TBA to compute these Fredholm determinants 



Towards functional equations

Solve standard TBA 
with source   

to get 
m cosh(u)

Y(u) ≡ e−ϵ(u)Two layered system:

Tracy-Widom TBA 
with source  to get Y(u) g

Relation between Fredholm determinants and TBA:  

-  supersymmetric index in two dimensions [Cecotti, Fendley, Intriligator, Vafa ’ 92] 
- The partition function of 2d polymers [Zamolodchikov] 
- Relations proven in Tracy-Widom ‘ 94 
-  partition functions supersymmetric gauge theories [Calvo, Grassi, Hatsuda, Marino, 

Moriyama, Okuyama…]

𝒩 = 2

S3



Simplest example: sinh-Gordon
ℒ =

1
4π

(∂ϕ)2 + 2μ cosh(2bϕ)One single type of particle of mass  m

S(u, v) =
sinh(u − v) − i sin(πp)
sinh(u − v) + i sin(πp)

p = b2(1 + b2)−1

Consider self-dual point , for which b = 1 𝒦s(u, v) ∼
1

cosh(u − v)

Boundary Sinh-Gordon 
(open string): ℒ = ( 1

4π
(∂ϕ)2 + 2μ cosh(2bϕ))+2μB (cosh(b ϕ − bϕ0) |x=0 + cosh(b ϕ − bϕ0) |x=R )

Also integrable, and reflection matrices are known



K(u, v) =
E(u) E(v)

M(u) + M(v)
Derivation in principle valid for any kernel of the type:

Class of kernels

Det(1 − z Ĝ) = exp (−∑
n

zn

n ∫ ∏
i

dui
𝒦s(ui, ui+1)

1 + eϵ(ui) )
= exp (−∑

n

zn

n ∫ ∏
i

duiKs(ui, ui+1))
≡ exp (−

∞

∑
n=1

zn

n
tr K*n

s )

Use Det(…) = etr log(…)

Ks(u, v) ≡
𝒦s(u, v)

1 + eϵ(u) 1 + eϵ(v)
E(u) ≡

2 eu

1 + eϵ(u)
M(u) ≡ e2u

E(u) ≡
2 cosh u

1 + eϵ(u)
M(u) ≡ cosh(2u)In the case of :K+



Derivation of Tracy-Widom TBA
Start by deriving a recursion relation for  K*n K(u, v) =

E(u) E(v)
M(u) + M(v)

M̂K̂2 − K̂2M̂ = (M̂K̂ + K̂M̂)K̂ − K̂(M̂K̂ + K̂M̂)
= |E⟩⟨E | K̂ − K̂ |E⟩⟨E |

For higher powers of K̂

Recursively:                     M̂K̂n − (−1)nK̂nM̂ =
n−1

∑
l=0

(−1)lK̂l |E⟩⟨E | K̂n−1−l

Interpret  as a sort of ‘‘wave-function’’ :       

Define  as an operator:         

E(u) ⟨u |E⟩ = E(u)

M̂ M̂ |u⟩ = M(u) |u⟩

Then the kernel becomes:      M̂K̂ + K̂M̂ = |E⟩⟨E |



K*n(u, v) =
E(u)E(v)

M(u) + (−1)n−1M(v)

n−1

∑
l=0

(−1)l⟨u | K̂l |E⟩⟨E | K̂n−l−1 |v⟩

M̂K̂n − (−1)nK̂nM̂ =
n−1

∑
l=0

(−1)lK̂l |E⟩⟨E | K̂n−1−l

Sandwich both sides with  and ⟨u | |v⟩

≡ ϕl(u) ≡ ϕn−l−1(v)

ϕj(u) =
1

E(u) ∫ dv K(u, v) E(v)ϕ j−1(v) ϕ 0(u) = 1With



Baxter-like equations
ϕj(u) =

1
E(u) ∫ dv K(u, v) E(v)ϕ j−1(v) ϕ 0(u) = 1

∼
1

cosh(u ± v)

1

cosh (u + i(π − ϵ)
2 )

+
1

cosh (u − i(π − ϵ)
2 )

= 2πδ(u)Use

Sum on both sides ∑
j

zj(…)

ϕ̃++
j + ϕ̃−−

j =
2π

1 + eϵ
ϕ̃j−1

To get something like ϕ̃j =
1 + eϵ(u)

2
E(u) ϕj

Shift by ±iπ/2

P++ + P−− = 2π v z Q
Q++ + Q−− = 2π v z P

P(u) ∝
∞

∑
j=0

z2j+1ϕ2j+1(u)

Q(u) ∝
∞

∑
j=0

z2jϕ2j(u)
v = (1 + eϵ)−1/2 (1 + eϵ++)

−1/2



Back to the kernel

R̂o ≡ K̂(I − z2K̂2)−1 , R̂e ≡ K̂2(I − z2K̂2)−1

Split the kernel into odd & even parts:

Ro(u, v) =
Q(u)Q(v) − P(u)P(v)

M(u) + M(v)
Re(u, v) =

Q(u)P(v) − Q(v)P(u)
M(u) − M(v)

The kernels can then be expressed in terms of the Baxter functions Q, P

Goal: derive a closed system of equations for  and . Ro Re



Closed system of equations
 and  only: no closed system of equationsRo Re

Need one additional function η

η(u) − i ≡ − i
(Q+ − P+)(Q− + P−)

E+E−

Ro(u) = lim
v→u

Q(u)Q(v) − P(u)P(v)
M(u) + M(v)

Re(u) = lim
v→u

Q(u)P(v) − Q(v)P(u)
M(u) − M(v)

+ P++ + P−− = 2π v z Q
Q++ + Q−− = 2π v z P

Baxter-like equations



‘’Y-system’’ for Tracy-
Widom TBA

Invert to obtain Tracy-Widom TBA:

η+ = 4 P . V . ∫
∞

−∞
dv

coth(2v) Re +(v)
cosh(2(u − v))

Re +(u) =
cosh(u)2

cosh(2u) (1 + eϵ(u))
exp ( 1

2π ∫
∞

−∞
dv

log(1 + η2
+(v))

cosh(2(u − v)) )
Ro +(u) =

2 Re +(u)coth(2u)
π ∫

∞

−∞
dv

arctan(η+(v))
cosh(2(u − v))2

ηs = 2∫
∞

−∞
dv

Re s(v)
cosh(2(u − v))

Re s(u) =
1

1 + eϵ(u)
exp ( 1

2π ∫
∞

−∞
dv

log(1 + η2
s (v))

cosh(2(u − v)) )
Ro s(u) =

Re s(u)
π ∫

∞

−∞
dv

arctan(ηs(v))
cosh(2(u − v))2

For  :𝒦s For  :𝒦+

log(1 + η2) = log(1 + eϵ+) + log(1 + eϵ−) + log R+
e + log R−

e

2i η′ 

η2 + 1
= 2i arctan(η)′ =

R+
o

R+
e

−
R−

o

R−
e

η+ + η− = 2π Re(u)

For 𝒦s :



Solving TBA
ηs = 2∫

∞

−∞
dv

Re s(v)
cosh(2(u − v))

Re s(u) =
1

1 + eϵ(u)
exp ( 1

2π ∫
∞

−∞
dv

log(1 + η2
s (v))

cosh(2(u − v)) )
Ro s(u) =

Re s(u)
π ∫

∞

−∞
dv

arctan(ηs(v))
cosh(2(u − v))2

e−ϵ → R(0)
e → η(1) → R(1)

o → R(2)
e → …Easy to solve iteratively:

η =
∞

∑
k=1

η(k)zk Re =
∞

∑
k=0

R(2k)
e z2k Ro =

∞

∑
k=0

R(2k+1)
o z2k+1Expand in :z

tr K*2n+1 =
1

π2n+1 ∫ du R(2n)
e (u)

tr K*2n =
1

π2n ∫ du R(2n−1)
o (u)

Easy to compute arbitrarily high 
powers of  in contrast with multiple 
nested integrals.

n



R x

CFT or UV limit of sinh-Gordon: Liouville CFT

L = ∫
R

0
dx ( 1

4π
(∂ϕ)2 + 2μ cosh(2bϕ)) + 2μB (cosh(b ϕ) |x=0 + cosh(b ϕ) |x=R )

Open string Lagrangian defined on a strip 

L = ∫
2π

0
dx

1
4π

(∂ϕ)2 + μ ( R
2π )

2+2b2

(e2bϕ + e−2bϕ)

+μB ( R
2π )

1+b2

((ebϕ + e−bϕ) |x=0 + (ebϕ + e−bϕ) |x=2π )

Rescale width of the strip to 2π

UV limit  , neglect one of the exponentials: boundary LiouvilleR → 0

Closed string channel: function in UV  disc one point function in boundary Liouvilleg− ↔

Physical limits



States in Liouville/Sinh-Gordon

Consider a field configuration constant in space  (minisuperspace)ϕ(t, x) = ϕ0(t)

Consider the classical limit b → 0

States characterized by canonical momentum   conjugate to P ϕ0

In Liouville

In Sinh-Gordon

Same approximation but  P = P(L)

In the UV limit, ground state energy

CFT beheviour with E(L) = − πceff /6L → ceff → cL = 1 − 24P2

Close to it, we take
ceff = 1 − 24 P(L)2 + 𝒪(L2)  define  in terms of ← P(L) ceff

[Zamolodchikov, Zamolodchikov’ 95]



Schrödinger equation
(−

1
2

d2

dϕ2
0

+ 4πμ ( L
2π )

2

cosh(2bϕ0) − 2P2) ΨP(ϕ0) = 0 .Sinh-Gordon ground-state wave-
function in minisuperspace:

4�� ( L
2� )

2
cosh(2b�0)

�P(�0)��P(��0)

-3000 -2000 -1000 1000 2000 3000
�0

-3

-2

-1

1

2

3

4

Figure 2: The sinh-Gordon potential and the corresponding wave-function. In the two
colored regions, we can approximate the wave-function by the corresponding Liouville one.
In the middle region, they reduce to plane waves and requiring their compatibility enforces
the quantization condition (61).

4.3 Liouville boundary data

The object of interest for comparison with sinh-Gordon g-function is the bulk one-point
function of the boundary Liouville theory whose formula was bootstrapped in [63]. In terms
of the Liouville momentum P and the boundary parameter s (see discussion around (53)),
its expression reads

hBs| P iL =
�
⇡µ�(b2)

��iP/b
�(1 + 2ibP )�(1 + 2iP/b)

cos(2⇡Ps)

iP
, (63)

where the bulk states are normalized according to

h P1 | P2i = ⇡ �(P1 � P2) . (64)

An immediate problem with this expression for comparison with the g-function is the exis-
tence of the IR singularity manifest in the pole at P = 0, which is precisely the point we are
interested in. We would like to find the correct prescription to subtract this pole and obtain
a finite result. This is generally a nontrivial problem but we can obtain some insight by
studying it within the minisuperspace approximation and eventually guess the full quantum
result from it.

Classically, the one-point function hBs|vP i
cl boils down to the overlap between the bulk

and boundary wave-functions. The bulk wave-function is a solution of the Schrödinger
equation (57) while the boundary one is related to the boundary Lagrangian by

'B(�0) = exp (�2µBL cosh(b�0)) (65)

18

ΨP(ϕ0) ≃
2

Γ(−2iP/b) ( πμL2

4π2b2 )
−iP/b

K2iP/b (
πμL

2πb
ebϕ0) ≡ ψP(ϕ0)

Bessel K
Liouville wave-function

Compatibility  quantization condition:→

Scl(P)2( L
2π )

−8iP/b

= 1

Classical reflection matrix  

P ∼ −
1

log(L/2π)
+ 𝒪 ( 1

log(L/2π)2 ) as L → 0

Ground state of Sinh-Gordon in CFT limit   Liouville  state↔ P = 0



Liouville Boundary Data
Compare with one-point function of the boundary Liouville (also known as FZZT states)  

 
⟨Bs |ψP⟩L = (πμγ(b2))−iP/b Γ(1 + 2ibP) Γ(1 + 2iP/b)

cos(2πPs)
iP

IR singularity!

Us1,s0
(P) ≡

⟨Bs1
|ΨP⟩shG − ⟨Bs0

|ΨP⟩shG

⟨ΨP |ΨP⟩
Reference one-
point function 

Split integration regions, and approximate each region by Liouville:

⟨Bs |ΨP⟩cl
shG ≃ ⟨Bs |ψ−P⟩cl

L + ⟨Bs |ψP⟩cl
L −

i
2P (Scl(P) −

1
Scl(P) ) + 𝒪(L) Independent of  

boundary parameter

Need to subtract the pole! Back to the classical limit:

⟨Bs |ΨP⟩cl
shG = ∫

∞

−∞
dϕ0 ΨP(ϕ0)φB(ϕ0)

φB(ϕ0) = exp (−2 μB cosh(bϕ0))Bulk wave-function
Boundary wave-function:



Comparison with Liouville

Us1,s0
(P) =

1

π (⟨Bs1
|ψ−P⟩L + ⟨Bs1

|ψP⟩L) −
1

π (⟨Bs0
|ψ−P⟩L + ⟨Bs0

|ψP⟩L)

Solve Tracy-Widom TBA in the UV limit and compare with

0.01 0.02 0.03 0.04 0.05
P

0.02

0.04

0.06

0.08

U 5
2
, 1
2
(P)

g 5
2
(P)-g 1

2
(P)

0.01 0.02 0.03 0.04 0.05
P

-0.25

-0.20

-0.15

-0.10

-0.05

U 5
2
, 1
2
(P)

g 5
2
(P)-g 1

2
(P)

Figure 3: Comparison of the di↵erence of g-functions for di↵erent values of s and the com-
bination (71) of the bulk Liouville one-point functions.

P is determined by the quantum version of (61), see appendix B for details. We expect that
for very small radius L or, equivalently very small P , the relation (61) becomes more accurate
and P defined as such approaches the Liouville momentum. The results are shown in figure
3. We have made the comparison for many di↵erent choices of the boundary parameters
and here we display two such choices for illustration. In all cases, it became apparent that
for small momentum there is a qualitative agreement between both quantities. We should
emphasize that this match is, nevertheless, not expected to be optimal away from P = 0 as
the relation (61) is approximate and, adding to this, the small radius limit is numerically
harder to achieve. It would be interesting to better understand how to exactly solve the
Tracy-Widom TBA in the UV limit along the lines of [41] for the sinh-Gordon UV central
charge and perform a more analytic comparison with Liouville.

5 Separation of variables and g-function

In this section, we present multiple integrals which we conjecture to describe a universal part
of the g-functions in the sinh-Gordon theory. It is a natural generalization of the formula
for the finite-volume one-point function by Lukyanov [35], which is based on Skylanin’s
separation of variables (SoV) [15]. We first explain basic properties of Lukyanov’s integral
formula to motivate our proposal. We then present our conjecture and discuss its properties.
Unlike the other sections, here we consider the sinh-Gordon theory at generic coupling b.

5.1 Q-Function and Lukyanov’s formula

Lukyanov’s formula is written in terms of the Q-function, which was first discussed by
Zamolodchikov in [64]. It is related to the pseudo-energy of TBA as11

1 + e
�✏(u) = Q

++(u)Q��(u) , (72)

and satisfies the functional identity

Q
++(u)Q��(u) = 1 +Q

[2a](u)Q[�2a](u) , (73)

11In this section, we basically follow the notations in [10] (and partly [18]). The only di↵erence is that
here f± mean the shift of the arguments by ±i⇡/4 while in [10] they mean the shift by ±i⇡/2.

20

For any boundary parameters:

Should be useful to study excited states and test [Kostov, Serban, Vu ’ 19; Jiang, Komatsu, Vescovi ’ 20]



Separation of Variables

⟨Ω |Ω⟩ = lim
N→∞

ℐN

ℐN ≡
1

(2N + 1)! ∫
∞

−∞

N

∏
k=−N

dθk (Q(θk))2

2π ∏
−N≤ j<k≤N

Δ(θj, θk)

Δ(θj, θk) ≡ (2 sinh ν(θj − θk)) (2 sinh ν̃(θj − θk))
ν ≡ 1 + b2 ν̃ ≡ 1 + b−2

1 + e−ϵ(u) = Q++(u)Q−−(u)

For the identity operator:

Lukyanov found a formula for one-point function in sinh-Gordon at finite volume. [Lukyanov’ 01]



⟨Ω |Ω⟩ = lim
N→∞

det [Mj,k]−N≤j,k≤N
Mj,k = ∫

∞

−∞

dθ
2π

(Q(θ))2e2(νk+ν̃j)θ

From the Vandermonde determinant formula we can rewrite 

For parity symmetric -function , determinant factorizesQ Q(−θ) = Q(θ)

det M =
1
2

det M− det M+
(M−)s,t = 2∫

∞

−∞

dθ
2π

Q(θ)Q(−θ)sinh(2νsθ)sinh(2ν̃tθ) (1 ≤ s, t ≤ N)

(M+)s,t = 2∫
∞

−∞

dθ
2π

Q(θ)Q(−θ)cosh(2νsθ)cosh(2ν̃tθ) (0 ≤ s, t ≤ N)

Conjecture: ⟨B |Ω⟩ ∝ det M−

Analogy: Gaudin norm for parity symmetric states det G = det G+ det G−

∼ ⟨MPS |u⟩ [Buhl-Mortensen, de Leeuw, Kristjansen,  Zarembo ’ 15]



• Selection rule:  vanishes if the -function is not parity-symmetric, . 
    (Boundary state is annihilated by the action of odd conserved charger under parity) 

• Still need to fix  

• Same trick works in XXX spin-chain: from the norm one can get SoV representation for Néel  

• Does this trick works for higher-rank cases?

det M− Q Q(θ) ≠ Q(−θ)

𝒩

⟨ |u⟩

Det(1 − Ĝ)

Det(1 − Ĝ+)
= lim

N→∞
𝒩 ×

det M−

det M
= lim

N→∞
𝒩 ×

ℐN

ℐN

ℐN =
1

N! ∫
∞

−∞ (
N

∏
k=1

dθk sinh(2νθk)sinh(2ν̃θk)Q(θk)Q(−θk)
π ) ∏

1≤ j,k≤N

Δ(θj, θk)

with

Δ(θj, θk) ≡ [2 cosh(2νθj) − 2 cosh(2νθk)] [2 cosh(2ν̃θj) − 2 cosh(2ν̃θk)]
= (sinh2(νθj) − sinh2(νθk)) (sinh2(ν̃θj) − sinh2(ν̃θk))



Future directions
• Extend to more general types of kernels and theories with bound-states/internal degrees of freedom. 

•  SYM g-function. 

• Physical interpretation of the equations 

• Analytically solution of these equations in UV/ IR? 

• Excited States? Dorey-Tateo analytic continuation for Tracy-Widom TBA? Use Liouville to test. 

• Sharpen/improve SoV conjecture. Guess higher-rank overlaps from norms? 

• Applications in the computation of  partition function of superconformal Chern-Simons with 

OSp gauge groups, where  appear. 

𝒩 = 4

S3

𝒦+



Thank you


