Bootstrapping holographic defect correlators in $\mathcal{N}=4 \mathrm{SYM}$

Aleix Gimenez-Grau

DESY Hamburg

Based on: Barrat, AGG, Liendo: 2108.13432.

The main characters

Stress-tensor (20') multiplet

$$
\begin{gathered}
\text { Wilson loop } \\
\mathcal{W}=\frac{1}{N} \operatorname{tr} P e^{\int d \tau\left(i A_{\tau}+\phi_{6}\right)} \\
\left\langle\mathcal{W}_{\text {circle }}\right\rangle=\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda})
\end{gathered}
$$

$$
\mathcal{O}_{2}=\operatorname{tr} \phi^{\left\{i_{1}\right.} \phi^{\left.i_{2}\right\}}
$$

$$
\left\langle\mathcal{O}_{2} \ldots \mathcal{O}_{2}\right\rangle
$$

The main characters

Stress-tensor (20') multiplet
Wilson loop

$$
\begin{array}{cc}
\mathcal{O}_{2}=\operatorname{tr} \phi^{\left\{i_{1}\right.} \phi^{\left.i_{2}\right\}} & \mathcal{W}=\frac{1}{N} \operatorname{tr} P e^{\int d \tau\left(i A_{\tau}+\phi_{6}\right)} \\
\left\langle\mathcal{O}_{2} \ldots \mathcal{O}_{2}\right\rangle & \left\langle\mathcal{W}_{\text {circle }}\right\rangle=\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda})
\end{array}
$$

We study their mixed correlators!

The main characters

Stress-tensor (20') multiplet

$$
\begin{array}{cc}
\mathcal{O}_{2}=\operatorname{tr} \phi^{\left\{i_{1}\right.} \phi^{\left.i_{2}\right\}} & \mathcal{W}=\frac{1}{N} \operatorname{tr} P e^{\int d \tau\left(i A_{\tau}+\phi_{6}\right)} \\
\left\langle\mathcal{O}_{2} \ldots \mathcal{O}_{2}\right\rangle & \left\langle\mathcal{W}_{\text {circle }}\right\rangle=\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda})
\end{array}
$$

We study their mixed correlators!

The simplest non-trivial observable is

$$
\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle \equiv \frac{\left\langle\mathcal{W} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle}{\langle\mathcal{W}\rangle}
$$

$$
\mathcal{O}_{2}
$$

Strong coupling expansion

Our regime: planar $\mathcal{N}=4 \mathrm{SYM}$ at large $\lambda=g^{2} N$.

Strong coupling expansion

Our regime: planar $\mathcal{N}=4 \mathrm{SYM}$ at large $\lambda=g^{2} N$.
The expansion takes the form: [Giombi, Pestun '12]

$$
\langle\langle\mathcal{O O}\rangle\rangle=\langle\langle\mathcal{O O}\rangle\rangle^{(0)}+\frac{\lambda}{N^{2}}\left(\langle\langle\mathcal{O O}\rangle\rangle^{(1)}+\frac{1}{\sqrt{\lambda}}\langle\langle\mathcal{O} \mathcal{O}\rangle\rangle^{(2)}+\ldots\right)+\ldots
$$

Strong coupling expansion

Our regime: planar $\mathcal{N}=4 \mathrm{SYM}$ at large $\lambda=g^{2} N$.
The expansion takes the form: [Giombi, Pestun '12]

$$
\begin{aligned}
\langle\langle\mathcal{O O}\rangle\rangle & =\langle\langle\mathcal{O O}\rangle\rangle^{(0)}+\frac{\lambda}{N^{2}}\left(\langle\langle\mathcal{O O}\rangle\rangle^{(1)}+\frac{1}{\sqrt{\lambda}}\langle\langle\mathcal{O O}\rangle\rangle^{(2)}+\ldots\right)+\ldots \\
& =>+
\end{aligned}
$$

Strong coupling expansion

Our regime: planar $\mathcal{N}=4 \mathrm{SYM}$ at large $\lambda=g^{2} N$.
The expansion takes the form: [Giombi, Pestun '12]

$$
\begin{aligned}
\langle\langle\mathcal{O O}\rangle\rangle & =\langle\langle\mathcal{O} \mathcal{O}\rangle\rangle^{(0)}+\frac{\lambda}{N^{2}}\left(\langle\langle\mathcal{O} \mathcal{O}\rangle\rangle^{(1)}+\frac{1}{\sqrt{\lambda}}\langle\langle\mathcal{O} \mathcal{O}\rangle\rangle^{(2)}+\ldots\right)+\ldots \\
& =
\end{aligned}
$$

In this work:

- Focus on the leading non-trivial correction $\langle\langle\mathcal{O O}\rangle\rangle^{(2)}$
- We do not calculate the Witten diagram
- We bootstrap the result with an inversion formula

Crossing equation

Our two-point function is

$$
\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle \propto \mathcal{F}(\underbrace{z, \bar{z}}_{\substack{\text { spacetime } \\ \text { cpacervioc }}}, \sigma)=\underbrace{\sigma^{2} F_{0}+\sigma F_{1}+F_{2}}_{R-\text { symmetry channels }}
$$

Crossing equation

Our two-point function is

$$
\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle \propto \mathcal{F}(\underbrace{z, \bar{z}}_{\text {spacetime }}, \sigma)=\underbrace{\sigma^{2} F_{0}+\sigma F_{1}+F_{2}}_{R-\text { symmetry channels }}
$$

Bulk-bulk:

$$
\mathcal{O}_{2} \times \mathcal{O}_{2} \sim \sum_{\mathcal{O}} \lambda_{22 \mathcal{O}} \mathcal{O}
$$

Bulk-defect :

$$
\left(\begin{array}{l}
\mathcal{O}_{2} \bullet \\
\mathcal{O}_{2} \bullet
\end{array}=\sum_{\mathcal{O}} \mathcal{O}\right.
$$

Crossing equation

Our two-point function is

$$
\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle \propto \mathcal{F}(\underbrace{z z, \bar{z}}_{\text {spacetime }}, \sigma)=\underbrace{\sigma^{2} F_{0}+\sigma F_{1}+F_{2}}_{R-\text { symmetry channels }}
$$

Bulk-bulk:

$$
\begin{aligned}
\mathcal{O}_{2} \times \mathcal{O}_{2} & \sim \sum_{\mathcal{O}} \lambda_{22 \mathcal{O}} \mathcal{O} \\
\mathcal{O}_{2} & \sim \sum_{\widehat{\mathcal{O}}} b_{2 \widehat{\mathcal{O}}} \widehat{\mathcal{O}}
\end{aligned}
$$

Bulk-defect :

Crossing equation

Our two-point function is

$$
\left.\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle \propto \underset{\substack{\text { spacetime } \\ \text { crosc-ratios }}}{\mathcal{F}(z, \bar{z}}, \sigma\right)=\underbrace{\sigma^{2} F_{0}+\sigma F_{1}+F_{2}}_{R \text {-symmetry channels }}
$$

Bulk-bulk :

$$
\begin{aligned}
\mathcal{O}_{2} \times \mathcal{O}_{2} & \sim \sum_{\mathcal{O}} \lambda_{22 \mathcal{O}} \mathcal{O} \\
\mathcal{O}_{2} & \sim \sum_{\widehat{\mathcal{O}}} b_{2 \widehat{\mathcal{O}}} \widehat{\mathcal{O}}
\end{aligned}
$$

Bulk-defect :

Our correlator $\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle$ contains an infinite amount of CFT data

$$
\mathcal{F}(z, \bar{z}, \sigma)=\sum_{\mathcal{O}} \lambda_{22 \mathcal{O}} a_{\mathcal{O}} \mathcal{G}_{\mathcal{O}}(z, \bar{z}, \sigma)=\sum_{\widehat{\mathcal{O}}} b_{2 \widehat{\mathcal{O}}}^{2} \hat{\mathcal{G}}_{\widehat{\mathcal{O}}}(z, \bar{z}, \sigma)
$$

Crossing equation

Our two-point function is

$$
\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle \propto \underset{\begin{array}{c}
\text { spacetime } \\
\text { cross-ratios }
\end{array}}{\mathcal{F}(\underbrace{z, \bar{z}}_{R-\text { symmetry channels }}, \sigma)=\underbrace{\sigma^{2} F_{0}+\sigma F_{1}+F_{2}}, ~}
$$

Bulk-bulk :

$$
\begin{aligned}
\mathcal{O}_{2} \times \mathcal{O}_{2} & \sim \sum_{\mathcal{O}} \lambda_{22 \mathcal{O}} \mathcal{O} \\
\mathcal{O}_{2} & \sim \sum_{\widehat{\mathcal{O}}} b_{2 \widehat{\mathcal{O}}} \widehat{\mathcal{O}}
\end{aligned}
$$

Bulk-defect :

Our correlator $\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle$ contains an infinite amount of CFT data

$$
\mathcal{F}(z, \bar{z}, \sigma)=\sum_{\mathcal{O}} \lambda_{22 \mathcal{O}} a_{\mathcal{O}} \mathcal{G}_{\mathcal{O}}(z, \bar{z}, \sigma)=\sum_{\widehat{\mathcal{O}}} b_{2 \widehat{\mathcal{O}}}^{2} \hat{\mathcal{G}}_{\widehat{\mathcal{O}}}(z, \bar{z}, \sigma)
$$

Reverse logic: consistency with crossing fixes \mathcal{F} !

Inversion formula

The central tool is the inversion formula: [Caron-Huot; Lemos, Liendo, Meineri, Sarkar '17]

$$
\mathcal{F}(z, \bar{z}, \sigma) \sim \sum_{\hat{\Delta}, s} \int d^{2} z K_{\hat{\Delta}, s}(z, \bar{z}) \operatorname{Disc} \mathcal{F}(z, \bar{z}, \sigma)
$$

Inversion formula

The central tool is the inversion formula: [Caron-Huot; Lemos, Liendo, Meineri, Sarkar '17]

$$
\mathcal{F}(z, \bar{z}, \sigma) \sim \sum_{\hat{\Delta}, s} \int d^{2} z K_{\hat{\Delta}, s}(z, \bar{z}) \operatorname{Disc} \mathcal{F}(z, \bar{z}, \sigma)
$$

The discontinuity is an imaginary part:

$$
\operatorname{Disc} \mathcal{F}(z, \bar{z}, \sigma)=\mathcal{F}(z, \bar{z}+i \epsilon, \sigma)-\mathcal{F}(z, \bar{z}-i \epsilon, \sigma)
$$

Inversion formula

The central tool is the inversion formula: [Caron-Huot; Lemos, Liendo, Meineri, Sarkar '17]

$$
\mathcal{F}(z, \bar{z}, \sigma) \sim \sum_{\hat{\Delta}, s} \int d^{2} z K_{\hat{\Delta}, s}(z, \bar{z}) \operatorname{Disc} \mathcal{F}(z, \bar{z}, \sigma)
$$

The discontinuity is an imaginary part:

$$
\operatorname{Disc} \mathcal{F}(z, \bar{z}, \sigma)=\mathcal{F}(z, \bar{z}+i \epsilon, \sigma)-\mathcal{F}(z, \bar{z}-i \epsilon, \sigma)
$$

Main message:

- Disc \mathcal{F} reconstructs \mathcal{F}.

Inversion formula

The central tool is the inversion formula: [Caron-Huot; Lemos, Liendo, Meineri, Sarkar '17]

$$
\mathcal{F}(z, \bar{z}, \sigma) \sim \sum_{\hat{\Delta}, s} \int d^{2} z K_{\hat{\Delta}, s}(z, \bar{z}) \operatorname{Disc} \mathcal{F}(z, \bar{z}, \sigma)
$$

The discontinuity is an imaginary part:

$$
\operatorname{Disc} \mathcal{F}(z, \bar{z}, \sigma)=\mathcal{F}(z, \bar{z}+i \epsilon, \sigma)-\mathcal{F}(z, \bar{z}-i \epsilon, \sigma)
$$

Main message:

- Disc \mathcal{F} reconstructs \mathcal{F}.
- $\operatorname{Disc} \mathcal{F}$ is much simpler than \mathcal{F}.

Discontinuity

We use the bulk expansion of $\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle \propto \mathcal{F}$:

$$
\mathcal{F}=\mathbb{1}+\lambda_{222} a_{2} \mathcal{G}_{\mathcal{O}_{2}}+\sum_{\mathcal{O}} \lambda_{22 \mathcal{O}} a_{\mathcal{O}} \mathcal{G}_{\mathcal{O}}
$$

Discontinuity

We use the bulk expansion of $\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle \propto \mathcal{F}$:

$$
\mathcal{F}=\mathbb{1}+\lambda_{222} a_{2} \mathcal{G}_{\mathcal{O}_{2}}+\sum_{\mathcal{O}} \lambda_{22 \mathcal{O}} a_{\mathcal{O}} \mathcal{G}_{\mathcal{O}}
$$

Physical input:

- Only single and double trace operators survive as $N \rightarrow \infty$.
- Unprotected single trace operators decouple as $\lambda \rightarrow \infty$.

Discontinuity

We use the bulk expansion of $\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle \propto \mathcal{F}$:

$$
\mathcal{F}=\mathbb{1}+\lambda_{222} a_{2} \mathcal{G}_{\mathcal{O}_{2}}+\sum_{\mathcal{O}} \lambda_{22 \mathcal{O}} a_{\mathcal{O}} \mathcal{G}_{\mathcal{O}}
$$

Physical input:

- Only single and double trace operators survive as $N \rightarrow \infty$.
- Unprotected single trace operators decouple as $\lambda \rightarrow \infty$.

The sum is over double traces $\mathcal{O} \sim \mathcal{O}_{2} \partial_{\mu_{1}} \ldots \partial_{\mu_{\ell}} \square^{n} \mathcal{O}_{2}$: [Goncalves '15]

$$
\Delta_{\mathcal{O}}=2 \Delta_{\mathcal{O}_{2}}+\ell+2 n+\frac{1}{N^{2}}\left(a+\frac{b}{\lambda^{3 / 2}}+\ldots\right)+\ldots
$$

Discontinuity

We use the bulk expansion of $\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle \propto \mathcal{F}$:

$$
\mathcal{F}=\mathbb{1}+\lambda_{222} a_{2} \mathcal{G}_{\mathcal{O}_{2}}+\sum_{\mathcal{O}} \lambda_{22 \mathcal{O}} a_{\mathcal{O}} \mathcal{G}_{\mathcal{O}}
$$

Physical input:

- Only single and double trace operators survive as $N \rightarrow \infty$.
- Unprotected single trace operators decouple as $\lambda \rightarrow \infty$.

The sum is over double traces $\mathcal{O} \sim \mathcal{O}_{2} \partial_{\mu_{1}} \ldots \partial_{\mu_{\ell}} \square^{n} \mathcal{O}_{2}$: [Goncalves '15]

$$
\Delta_{\mathcal{O}}=2 \Delta_{\mathcal{O}_{2}}+\ell+2 n+\frac{1}{N^{2}}\left(a+\frac{b}{\lambda^{3 / 2}}+\ldots\right)+\ldots
$$

But we have Disc $\mathcal{G}_{\mathcal{O}} \propto \gamma_{\mathcal{O}}=0$ at the order we work!

Discontinuity

We use the bulk expansion of $\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle \propto \mathcal{F}$:

$$
\mathcal{F}=\mathbb{1}+\lambda_{222} a_{2} \mathcal{G}_{\mathcal{O}_{2}}+\sum_{\mathcal{O}} \lambda_{22 \mathcal{O}} a_{\mathcal{O}} \mathcal{G}_{\mathcal{O}}
$$

Physical input:

- Only single and double trace operators survive as $N \rightarrow \infty$.
- Unprotected single trace operators decouple as $\lambda \rightarrow \infty$.

The sum is over double traces $\mathcal{O} \sim \mathcal{O}_{2} \partial_{\mu_{1}} \ldots \partial_{\mu_{\ell}} \square^{n} \mathcal{O}_{2}$: [Goncalves '15]

$$
\Delta_{\mathcal{O}}=2 \Delta_{\mathcal{O}_{2}}+\ell+2 n+\frac{1}{N^{2}}\left(a+\frac{b}{\lambda^{3 / 2}}+\ldots\right)+\ldots
$$

But we have Disc $\mathcal{G}_{\mathcal{O}} \propto \gamma_{\mathcal{O}}=0$ at the order we work!
So the discontinuity is dramatically simpler:

$$
\operatorname{Disc} \mathcal{F} \sim \operatorname{Disc}\left(\mathbb{1}+\lambda_{222} a_{2} \mathcal{G}_{\mathcal{O}_{2}}\right)
$$

Final result

We have computed $\left\langle\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle\right\rangle^{(2)} \sim \sigma^{2} F_{0}+\sigma F_{1}+F_{2}$ where:

$$
\begin{aligned}
& F_{0}(z, \bar{z})=-\frac{\sqrt{\lambda}}{2 N^{2}} \frac{z \bar{z}}{(1-z)(1-\bar{z})}\left[\frac{1+z \bar{z}}{(1-z \bar{z})^{2}}+\frac{2 z \bar{z} \log z \bar{z}}{(1-z \bar{z})^{3}}\right] \\
& \begin{aligned}
F_{1}(z, \bar{z})= & \frac{\sqrt{\lambda}}{N^{2}}\left[\log (1+\sqrt{z \bar{z}})+\frac{z \bar{z}}{(1-z \bar{z})^{2}}\right. \\
& \left.+\frac{z \bar{z}\left(5 z \bar{z}-2 z^{2} \bar{z}^{2}+z^{3} \bar{z}^{3}-(z+\bar{z})\left(2-z \bar{z}+z^{2} \bar{z}^{2}\right)\right) \log z \bar{z}}{2(1-z)(1-\bar{z})(1-z \bar{z})^{3}}\right] \\
F_{2}(z, \bar{z})= & \frac{\sqrt{\lambda}}{8 N^{2}}\left[-3-\frac{2(z+\bar{z})}{\sqrt{z \bar{z}}}+\frac{(z+\bar{z})(1+z \bar{z})-4 z \bar{z}}{(1-z \bar{z})^{2}}\right. \\
& +\frac{2((z+\bar{z})(1+z \bar{z})-4 z \bar{z}) \log (1+\sqrt{z \bar{z})}}{z \bar{z}} \\
& \left.+\frac{z \bar{z}\left((z+\bar{z})\left(3-2 z \bar{z}+z^{2} \bar{z}^{2}\right)-6+6 z \bar{z}-4 z^{2} \bar{z}^{2}\right) \log z \bar{z}}{(1-z \bar{z})^{3}}\right]
\end{aligned}
\end{aligned}
$$

Outlook

- We have computed $\left\langle\left\langle\mathcal{O}_{L} \mathcal{O}_{L}\right\rangle\right\rangle$ for length $L=2,3,4$ CPOs. Can one guess a closed formula? Maybe in Mellin space?

Outlook

- We have computed $\left\langle\left\langle\mathcal{O}_{L} \mathcal{O}_{L}\right\rangle\right\rangle$ for length $L=2,3,4$ CPOs. Can one guess a closed formula? Maybe in Mellin space?
- Unprotected CFT data $a_{\mathcal{O}}$ from integrability?

Outlook

- We have computed $\left\langle\left\langle\mathcal{O}_{L} \mathcal{O}_{L}\right\rangle\right.$ for length $L=2,3,4$ CPOs. Can one guess a closed formula? Maybe in Mellin space?
- Unprotected CFT data $a_{\mathcal{O}}$ from integrability?
- Explicit holographic calculation:

$$
\left\langle\left\langle\mathcal{O}_{L} \mathcal{O}_{L}\right\rangle\right\rangle=\wp+\sum_{\substack{\text { single } \\ \text { traces }}} \wp
$$

Outlook

- We have computed $\left\langle\left\langle\mathcal{O}_{L} \mathcal{O}_{L}\right\rangle\right.$ for length $L=2,3,4$ CPOs. Can one guess a closed formula? Maybe in Mellin space?
- Unprotected CFT data $a_{\mathcal{O}}$ from integrability?
- Explicit holographic calculation:

$$
\left.\left\langle\mathcal{O}_{L} \mathcal{O}_{L}\right\rangle\right\rangle=\wp+\sum_{\substack{\text { single } \\ \text { traces }}} \wp
$$

- Other holographic setups:
- Half-BPS Wilson line in ABJM
- Surface operators in $\mathcal{N}=4$ SYM
- M2- and M5-brane defects in $(2,0)$ theory

Outlook

- We have computed $\left\langle\left\langle\mathcal{O}_{L} \mathcal{O}_{L}\right\rangle\right.$ for length $L=2,3,4$ CPOs. Can one guess a closed formula? Maybe in Mellin space?
- Unprotected CFT data $a_{\mathcal{O}}$ from integrability?
- Explicit holographic calculation:

$$
\left\langle\left\langle\mathcal{O}_{L} \mathcal{O}_{L}\right\rangle\right\rangle=\wp+\sum_{\substack{\text { single } \\ \text { traces }}} \wp
$$

- Other holographic setups:
- Half-BPS Wilson line in ABJM
- Surface operators in $\mathcal{N}=4$ SYM
- M2- and M5-brane defects in $(2,0)$ theory
- Defects in condensed matter systems:
- Monodromy defects [AGG, Liendo '21]
- Quantum impurities (work in progress!)

Thank you!

