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Introduction

A BCFT defined on half space preserves SO(d , 1) subgroup of the
Euclidean conformal group SO(d + 1, 1). This is also the isometry
group of AdSd , so studying a CFT in AdS is Weyl equivalent to
studying a BCFT

ds2 = dz2 + (dx)2 = z2
(
dz2 + (dx)2

z2

)
= z2ds2AdSd . (1)

In the AdS setup, the boundary CFT is located at the boundary of
AdS. We can use techniques from the AdS/CFT literature to study
properties of BCFT. For instance, the four point function of boundary
operators can be computed using Witten diagrams.

ˆ̄Ψ
k,γ

(x3)

Ψ̂j,β(x2)

ˆ̄Ψ
i,α

(x1)

Ψ̂l,δ(x4)

x z = 0 Boundary
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A simple example: Free scalar with a boundary

Consider a free scalar on a half space

S =
1

2

∫ ∞

0
dz

∫
dd−1x (∂µϕ)

2. (2)

The usual variational argument gives the equation of motion □ϕ = 0
and the following conformally invariant boundary conditions:

– Neumann with ∂zϕ(z = 0, x) = 0. In this case, the leading operator
living on the boundary is ϕ̂(x) = ϕ(z = 0, x) which has dimensions
d/2− 1.

– Dirichlet with ϕ(z = 0, x) = 0. In this case, the leading operator living
on the boundary is ϕ̂(x) = ∂zϕ(z = 0, x) which has dimensions d/2.
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A simple example: Free scalar with a boundary

Let’s now put the free scalar on AdSd

S =

∫
ddx

√
g

(
1

2
(∂µϕ)

2 − d(d − 2)

8
ϕ2

)
. (3)

Solving the equation of motion gives a bulk-bulk propagator which
has the following behaviour near the z → 0 boundary:

ϕ(x) ∼ z∆̂α(x) + zd−1−∆̂β(x) where

∆̂(∆̂− (d − 1)) = −d(d − 2)

4
=⇒ ∆̂D =

d

2
, ∆̂N =

d

2
− 1. (4)

As expected, there are two choices corresponding to Dirichlet and
Neumann boundary conditions in flat space.
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A simple example: Free scalar with a boundary (q = 1)

The correlation functions are also related. By method of images,

⟨ϕ(x1)ϕ(x2)⟩flatN/D =
1(

x212 + (z1 − z2)2
) d

2
−1

± 1(
x212 + (z1 + z2)2

) d
2
−1

.

(5)

This is related by a Weyl transform to the scalar bulk-bulk propagator
in AdSd

⟨ϕ(x1)ϕ(x2)⟩flatN/D =
1

(z1z2)
d
2
−1

Gbb
∆̂N/D

(ξ), ξ =
x212 + z212
4z1z2

Gbb
∆̂

=
1

(4ξ)∆̂
2F1

(
∆̂, ∆̂− d

2
+ 1, 2∆̂− d + 2,−1

ξ

)
.

(6)
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Large N Gross-Neveu model

Let us start with a free massive fermion in AdS which is described by
S = −

∫
ddx

√
gΨ̄(γ · ∇+m)Ψ. Fermion satisfies a boundary

condition γ0Ψ(z → 0, x) = ±Ψ(z → 0, x) and for m > 0, the
corresponding boundary fermion has dimensions ∆̂ = (d − 1)/2∓m.

Next, let us consider U(N) invariant Gross-Neveu model which may
be described in AdS by

S = −
∫

ddx
√
gx

(
Ψ̄iγ · ∇Ψi + σΨ̄iΨ

i
)

=⇒ Z =

∫
[dσ] exp (Ntr log(γ · ∇+ σ(x)))

(7)

At large N, we can do the path integral over σ by assuming a
constant saddle σ(x) = σ∗ which can be found by solving

∂F

∂σ∗ = −Ntr

[
1

γ · ∇+ σ∗

]
= 0. (8)
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Large N Gross-Neveu model

So at leading order in large N, σ∗ acts like a mass for the fermions.
Choosing σ∗ > 0, for the boundary condition
γ0Ψ(z → 0, x) = −Ψ(z → 0, x) we find the following unitary saddle
between 2 < d < 4

σ∗ = d/2− 1 =⇒ ∆̂ = d − 3

2
. (9)

Let’s call this phase B1.

For the other choice of boundary condition
γ0Ψ(z → 0, x) = Ψ(z → 0, x), we only find a unitary saddle for
3 ≤ d ≤ 4

σ∗ = 2− d/2 =⇒ ∆̂ = d − 5

2
. (10)

Let’s call this phase B2. This is all at leading order in large N.
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Sigma fluctuations

To next order in 1/N, we need to expand around the saddle to
consider σ fluctuations, σ(x) = σ∗ + δσ(x). The quadratic piece of
the effective action is given by

Seff(σ) =
N

2

∫
ddxddy

√
gx
√
gy Tr [GΨ(x , y)GΨ(y , x)] δσ(x)δσ(y).

(11)

We need to invert this quadratic piece to obtain σ propagator. For B1

phase, i.e. σ∗ = d/2− 1, there is a unique choice of σ propagator,
which in particular has a leading boundary scalar of dimension d in its
spectrum. However, for σ∗ = 2− d/2, we have two choices leading to
boundary scalars of dimension 2 and d − 3. We call these phases B2

and B ′
2 respectively, and they can only be distinguished at subleading

order in 1/N.
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Large N phase diagram

d
2 3 4

IR

UV

GN GNY 〈s〉 6= 0

B1

GNY Dirichlet

B2

GNY Neumann

B′
2

σ̂

σ̂2
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Gross-Neveu-Yukawa (GNY) model in d = 4− ϵ

Near four dimensions, we have 3 boundary phases in the large N
description. Let’s see how they arise in the GNY model which is
described by the following action

S =

∫
ddx

√
g(x)

[
(∂µs)

2

2
− d(d − 2)

8
s2

−
(
Ψ̄iγ · ∇Ψi + g1sΨ̄iΨ

i
)
+

g2
24

s4
]
.

(12)

In the B1 phase, the scalar s gets a vev determined by the minimum
of the potential on hyperbolic space

(s∗)2 =
3d(d − 2)

2g∗
2

. (13)

When s has no vev, we can either impose Neumann or Dirichlet
boundary conditions on it, which correspond to B ′

2 and B2 phase
respectively.
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Using bulk equations of motion

I will now demonstrate a simple way to do the perturbation theory in
ϵ in this model. Say we want to compute the two-point function of
the bulk scalar ⟨s(x1)s(x2)⟩ to leading order in ϵ. I will demonstrate
how it goes in the phases B2 and B ′

2 where it does not get any vev.
The conventional way is to calculate the following diagrams in AdS

This involves calculating two integrals over AdS.
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Using bulk equations of motion

There is a simpler way to do this calculation if we note that the field
s satisfies equations of motion which implies the following equation
for the two-point function(

∇2
x2 +

d(d − 2)

4

)(
∇2

x1 +
d(d − 2)

4

)
⟨s(x1)s(x2)⟩ =

g2
1 ⟨Ψ̄iΨ

i ⟩2 + g2
1 ⟨Ψ̄ia(x1)Ψ

jb(x2)⟩⟨Ψia(x1)Ψ̄jb(x2)⟩.
(14)

This is a fourth order differential equation in the cross-ratio ξ for the
two-point function G (ξ). We can solve it, and the constants can be
fixed by fixing the behaviour at the boundary and by using the bulk
CFT data.
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Using bulk equations of motion

Let me write the two-point function explicitly in the B2 phase, when
we impose Dirichlet boundary condition on s

GD
s (ξ) =

1

4ξ
− 1

4 + 4ξ
+ ϵ

[
c3

(
log (ξ)

1 + ξ
− log(1 + ξ)

ξ

)
+

N2

2(2N + 3)
+

3

8(2N + 3)

(
log 4ξ

ξ
− log(4 + 4ξ)

1 + ξ

)]
.

(15)

This contains all the BCFT data to order ϵ for the operators appearing
in the BOE of s. The dimension of the leading boundary scalar is

∆̂D
s = 2−

√
4N2 + 132N + 9− 2N + 21

12(2N + 3)
ϵ (16)

consistent with the large N result of 2.

We also used a similar method to fix fermion two-point function to
leading order in ϵ.
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Conclusions

We discussed how hyperbolic space can be used to describe conformal
boundaries and applied it to study various boundary phases of
Gross-Neveu model. We also used equations of motion to fix the
two-point function of bulk fields.

It will be useful to use this formalism to study other examples of
boundary CFT. A natural direction to explore is to gauge the U(N)
global symmetry and couple the fermions to the Chern-Simons gauge
theory. This may be useful to study how bose-fermi dualities are
realized in the presence of a boundary.
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Thank You

Himanshu Khanchandani LIJC Nov 25 2021 16 / 16


	Introduction
	Free scalar example

	Gross-Neveu BCFT
	Large N Gross-Neveu model
	Gross-Neveu-Yukawa (GNY) model in d = 4 - 

	Conclusions

