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Introduction

o A BCFT defined on half space preserves SO(d, 1) subgroup of the
Euclidean conformal group SO(d + 1,1). This is also the isometry
group of AdSy, so studying a CFT in AdS is Weyl equivalent to
studying a BCFT

dz? + (dx)?

Z2

ds? = dz? + (dx)? = 22 < > = zzdsf\dsd. (1)
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Introduction

o A BCFT defined on half space preserves SO(d, 1) subgroup of the
Euclidean conformal group SO(d + 1,1). This is also the isometry
group of AdSy, so studying a CFT in AdS is Weyl equivalent to
studying a BCFT

dz? + (dx)?

Z2

ds? = dz? + (dx)? = 22 < > = zzdsf\dsd. (1)

@ In the AdS setup, the boundary CFT is located at the boundary of
AdS. We can use techniques from the AdS/CFT literature to study
properties of BCFT. For instance, the four point function of boundary
operators can be computed using Witten diagrams.

v (x)) i (x3)

z = 0 Boundary

Uy 5(x1)
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A simple example: Free scalar with a boundary

o Consider a free scalar on a half space

S= ;/OOO dz/dd—lx (0u0)?. (2)
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A simple example: Free scalar with a boundary

o Consider a free scalar on a half space

S= ;/OOO dz/dd—lx (0u0)?. (2)

@ The usual variational argument gives the equation of motion O¢ = 0
and the following conformally invariant boundary conditions:

— Neumann with 9,¢(z = 0,x) = 0. In this case, the leading operator
living on the boundary is ¢(x) = ¢(z = 0, x) which has dimensions
d/2—1.

— Dirichlet with ¢(z = 0,x) = 0. In this case, the leading operator living
on the boundary is ¢(x) = d,6(z = 0,x) which has dimensions d/2.
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A simple example: Free scalar with a boundary

@ Let’s now put the free scalar on AdSy

S = / d9%\/g <;(0M¢)2 - d(dg_2)¢2> : (3)
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A simple example: Free scalar with a boundary

@ Let’s now put the free scalar on AdSy

szi/d%wg<igm@2—d“g*nﬁ>- (3)

@ Solving the equation of motion gives a bulk-bulk propagator which
has the following behaviour near the z — 0 boundary:
P(x) ~ z2a(x) + 2971~ AB(x) where

d(d —2) s d . d

AA-(d-1)) =~ = Ap=75, Ay=5-1 (9
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A simple example: Free scalar with a boundary

@ Let’s now put the free scalar on AdSy

szi/d%wg<igm@2—d“g*nﬁ>- (3)

@ Solving the equation of motion gives a bulk-bulk propagator which
has the following behaviour near the z — 0 boundary:
P(x) ~ z2a(x) + 2971~ AB(x) where

d(d —2) s d . d

AA-(d-1)) =~ = Ap=75, Ay=5-1 (9

@ As expected, there are two choices corresponding to Dirichlet and
Neumann boundary conditions in flat space.

Himanshu Khanchandani LIJC Nov 25 2021 5/16



A simple example: Free scalar with a boundary (q = 1)

@ The correlation functions are also related. By method of images,

1 1
((x1)p(x2))o ) = + 7
N e (-2 (R (@4 2))

[SI S8
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A simple example: Free scalar with a boundary (q = 1)

@ The correlation functions are also related. By method of images,

(5)

a 1 1
(x, + (21— 22)?) 2 (xto + (21 + 22)?) 2
@ This is related by a Weyl transform to the scalar bulk-bulk propagator
in AdSy
1 x3, + 22
flat bb 12 T %12
- - Gb _ X242
<¢(X1)¢(X2)>N/D (2122)g_1 AN/D(g), 5 47,2,
1 PO 1
gb: —5 1<A,A—d+1,2A—d+2,— >
(46)4 2
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Large N Gross-Neveu model

@ Let us start with a free massive fermion in AdS which is described by
S=—[dx,/gV(y-V + m)V. Fermion satisfies a boundary
condition yoV(z — 0,x) = £W(z — 0,x) and for m > 0, the
corresponding boundary fermion has dimensions A = (d —1)/2 T m.
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Large N Gross-Neveu model

@ Let us start with a free massive fermion in AdS which is described by
S=—[dx,/gV(y-V + m)V. Fermion satisfies a boundary
condition yoV(z — 0,x) = £W(z — 0,x) and for m > 0, the
corresponding boundary fermion has dimensions A = (d—1)/2F m.

o Next, let us consider U(N) invariant Gross-Neveu model which may
be described in AdS by

S= —/ddx S (\Tlry A VAULE U\TJ,-\IJ")

(7)
.7 /[da] exp (Ntrlog(v - V + 0/(x)))
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Large N Gross-Neveu model

Let us start with a free massive fermion in AdS which is described by
S=—[dx,/gV(y-V + m)V. Fermion satisfies a boundary
condition yoV(z — 0,x) = £W(z — 0,x) and for m > 0, the
corresponding boundary fermion has dimensions A = (d—1)/2F m.

Next, let us consider U(N) invariant Gross-Neveu model which may
be described in AdS by

S= —/ddx S (\Tlry A VAULE U\TJ,-\IJ")

(7)
= Z= /[da] exp (Ntrlog(y -V + a(x)))
At large N, we can do the path integral over o by assuming a
constant saddle o(x) = o* which can be found by solving
OF 1
=—Ntr | ——| = 8
Oo* r[fy-V%—a*} (®)
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Large N Gross-Neveu model

@ So at leading order in large N, ¢* acts like a mass for the fermions.
Choosing ¢* > 0, for the boundary condition
YV (z — 0,x) = —V(z — 0,x) we find the following unitary saddle
between 2 < d < 4

w

c*=d2—1 = A=d-Z. (9)

N

Let's call this phase Bj.
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Large N Gross-Neveu model

@ So at leading order in large N, ¢* acts like a mass for the fermions.
Choosing ¢* > 0, for the boundary condition
YV (z — 0,x) = —V(z — 0,x) we find the following unitary saddle
between 2 < d < 4

w

c*=d2—1 = A=d-Z. (9)

N

Let's call this phase Bj.

@ For the other choice of boundary condition
7V(z = 0,x) = W(z — 0,x), we only find a unitary saddle for
3<d<4

5

5

Let’s call this phase By. This is all at leading order in large N.

cf=2-d/2 = A=d-— (10)
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Sigma fluctuations

@ To next order in 1/N, we need to expand around the saddle to
consider o fluctuations, o(x) = o* + do(x). The quadratic piece of
the effective action is given by

Sail0) = 5 [ dxdy V&g Tr[Gulx.y)Guly. 0] 37(x)3a ().
(1)
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Sigma fluctuations

@ To next order in 1/N, we need to expand around the saddle to
consider o fluctuations, o(x) = o* + do(x). The quadratic piece of
the effective action is given by

Sui(0) = 5 [ dxay V& Tr[Gu(x.y)Guly.x)] 5o (x)3a()
(1)

@ We need to invert this quadratic piece to obtain o propagator. For B;
phase, i.e. 0* = d/2 — 1, there is a unique choice of o propagator,
which in particular has a leading boundary scalar of dimension d in its
spectrum. However, for 0* =2 — d/2, we have two choices leading to
boundary scalars of dimension 2 and d — 3. We call these phases B>
and B} respectively, and they can only be distinguished at subleading
order in 1/N.
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Large N phase diagram

B} uv
v J GNY Neumann
6’2
B
° GNY Dirichlet
o
By
"GN GNY (s) #0°
IR
2 3 4 d
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Gross-Neveu-Yukawa (GNY) model in d =4 — ¢

@ Near four dimensions, we have 3 boundary phases in the large N
description. Let's see how they arise in the GNY model which is
described by the following action

s)2 —
- [ e[ O - 40-2),

82 4
24°

— (\TJ;7 . V\Ui + gls\Tl;\Ui) +
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Gross-Neveu-Yukawa (GNY) model in d =4 — ¢

@ Near four dimensions, we have 3 boundary phases in the large N
description. Let's see how they arise in the GNY model which is
described by the following action

s)2 —
- [ e[ O - 40-2),

82 4
24°

(12)
— (\TJ;7 . V\Ui + gls\Tl;\Ui) +

@ In the B; phase, the scalar s gets a vev determined by the minimum
of the potential on hyperbolic space

3d(d — 2
(S*)2 _ ( . )
2g;
When s has no vev, we can either impose Neumann or Dirichlet
boundary conditions on it, which correspond to Bj and B, phase
respectively.

Himanshu Khanchandani LIJC Nov 25 2021 11/16

(13)



Using bulk equations of motion

@ | will now demonstrate a simple way to do the perturbation theory in
€ in this model. Say we want to compute the two-point function of
the bulk scalar (s(x1)s(x2)) to leading order in €. | will demonstrate
how it goes in the phases B, and Bj where it does not get any vev.
The conventional way is to calculate the following diagrams in AdS

FaE t o

This involves calculating two integrals over AdS.
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Using bulk equations of motion

@ There is a simpler way to do this calculation if we note that the field
s satisfies equations of motion which implies the following equation
for the two-point function

(Viz + d(d4_2)) (Vil + d(d4_2)> (s(x1)s(x2)) =

gt (Viv')? + gf (Wi )W (x2)) (W2 (1) W (x2)) -

(14)
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Using bulk equations of motion

@ There is a simpler way to do this calculation if we note that the field
s satisfies equations of motion which implies the following equation
for the two-point function

(v + 22 (92 22 st -
T+ g2 (000 WP ) (VP ) U2

(14)

@ This is a fourth order differential equation in the cross-ratio £ for the
two-point function G(&). We can solve it, and the constants can be
fixed by fixing the behaviour at the boundary and by using the bulk
CFT data.
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Using bulk equations of motion

@ Let me write the two-point function explicitly in the B, phase, when
we impose Dirichlet boundary condition on s

b 11 [ (log(e) log(1+&)
e =g ara [C3<1+€ : ) 15)
N2 3 log4¢  log(4 + 4€)
+2(2N+3)+8(2N+3)< ¢ 1+¢ ”
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Using bulk equations of motion

@ Let me write the two-point function explicitly in the B, phase, when
we impose Dirichlet boundary condition on s

b 11 [ (log(e) log(1+&)
e =g ara [C3<1+€ : ) 15)
N2 3 log4¢  log(4 + 4€)
+2(2N+3)+8(2N+3)< ¢ 1+¢ ”

@ This contains all the BCFT data to order € for the operators appearing
in the BOE of s. The dimension of the leading boundary scalar is

B VAN2 + 132N +9 — 2N + 21
12(2N +3)

AP =2 (16)

consistent with the large N result of 2.

Himanshu Khanchandani LIJC Nov 25 2021 14 /16



Using bulk equations of motion

@ Let me write the two-point function explicitly in the B, phase, when
we impose Dirichlet boundary condition on s

b 11 [ (log(e) log(1+&)
e =g ara [C3<1+€ : ) 15)
N2 3 log4¢  log(4 + 4€)
+2(2N+3)+8(2N+3)< ¢ 1+¢ ”

@ This contains all the BCFT data to order € for the operators appearing
in the BOE of s. The dimension of the leading boundary scalar is

B VAN2 + 132N +9 — 2N + 21
12(2N +3)

AP =2 (16)
consistent with the large N result of 2.

@ We also used a similar method to fix fermion two-point function to
leading order in e.

Himanshu Khanchandani LIJC Nov 25 2021 14 /16



Conclusions

@ We discussed how hyperbolic space can be used to describe conformal
boundaries and applied it to study various boundary phases of
Gross-Neveu model. We also used equations of motion to fix the
two-point function of bulk fields.

o It will be useful to use this formalism to study other examples of
boundary CFT. A natural direction to explore is to gauge the U(N)
global symmetry and couple the fermions to the Chern-Simons gauge
theory. This may be useful to study how bose-fermi dualities are
realized in the presence of a boundary.
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Thank You
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