Integrable ε-models, hd Chern-Simons theory
\& affine Gandin models.
based on [2008.01829] w/M. Bernini \& A. Schenkel

$$
\&[2011.13800] \mathrm{w} / \mathrm{s} . \text { Lacroix }
$$

2d Integrable field theories.
A field theory in $2 d$ is classically integrable if its equations of motion take the Lax form:

$$
\text { e.o.m. }\left(\left\{\phi_{i}\right\}\right)=0 \Leftrightarrow d \mathcal{L}(z)+\frac{1}{2}[L(z), \mathcal{L}(z)]=0
$$

Lax connection $\mathcal{L}(z)=\mathcal{L}(\sigma, \tau, \tau) d \sigma+\mathcal{M}(\sigma, \tau, \tau) d \tau$ meromorphic dependence on z.
Example:
Principal chiral model $\partial_{+}\left(g_{-j}^{j_{-}} \partial_{-g}\right)-\partial_{-}\left(g^{g^{2} \partial_{+} g}\right)=0$.
Field $g \in C^{\infty}(\Sigma, 6)$. Let $j=g^{-1} d g \in \Omega^{1}(\Sigma, g)$,

$$
\begin{aligned}
& \mathcal{L}(z)=\frac{j-z * j}{1-z^{2}}=\frac{j_{+} d \sigma^{+}}{1-z}+\frac{j_{-} d_{\sigma}-}{1+z} \\
\hookrightarrow & d \mathcal{L}(z)+\frac{1}{2}[\mathcal{L}(z), \mathcal{L}(z)]=\frac{1}{1-z^{2}}\left(d j+\frac{1}{2}[j, j]\right)-\frac{z}{1-z^{2}} d * j .
\end{aligned}
$$

Q: What is the origin of the Lax connection?

Algebraic/Hamiltonian origin:

* Gandin models:

9 semi simple Lie algebra / \mathbb{C}, dual oases $\{1\}, 1$ ta.
Lax matrix

$$
L(z):=\sum_{i=1}^{N} \frac{I_{a} \otimes I^{a(i)}}{z-z_{i}}
$$

Satisfies

Gandin Hamiltonians:

$$
H_{i}:=\operatorname{res}_{z_{i}}\langle L(z), L(z)\rangle=\sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{I_{a}^{(i)} I^{a(j)}}{z_{i}-z_{j}}
$$

Many finite dimensional integrable systems are representations of Gandin models.

Example: Neumann model: $g=s l_{2}=\langle E, H, F\rangle$,

$$
\begin{aligned}
& \sum_{i=1}^{N} \frac{I_{a} \otimes I^{a(i)}}{z-z_{i}}+I_{a} \otimes I^{a(\infty)} \xrightarrow{\text { rep }} \frac{1}{2}\left(\begin{array}{ll}
\sum_{i=1}^{N} \frac{x_{i} p_{i}}{z-z_{i}} & -\sum_{i=1}^{N} \frac{x_{i}^{2}}{z-z_{i}} \\
1+\sum_{i=1}^{N} \frac{p_{i}^{2}}{z-z_{i}} & -\sum_{i=1}^{N} \frac{x_{i} p_{i}}{z-z_{i}}
\end{array}\right) \\
& E^{(i)} \longrightarrow \frac{1}{2} p_{i}^{2}, H^{(i)} \longrightarrow x_{i} p_{i}, F^{(0)} \longrightarrow-\frac{1}{2} x_{i}^{2} \quad\left\{x_{i}, p_{j}\right\}=\delta_{i j} \\
& E^{(\infty)} \longrightarrow \frac{1}{2}, H^{(\infty)} \longrightarrow 0, F^{(\infty)} \longrightarrow 0
\end{aligned}
$$

* Affine Gaudin models:
$\tilde{g}=g \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} k \oplus \mathbb{C} d \quad$ untwisted affine KM algebra.
dual bases $\left\{I^{\tilde{a}}\right\}=\left\{I^{a} \otimes t^{n}, k, d\right\},\left\{I_{\tilde{a}}\right\}=\left\{I_{a} \otimes t^{-n}, d, k\right\}$

Idea: $2 d$ IFTs with g-valued Lax connections as representations of Gaudin models associated with \tilde{g} :

$$
\text { [Feigin-Frenkel ' } 07]\left[B V^{\prime} 17\right]
$$

$$
\begin{aligned}
& L(z) d z=\sum_{i=1}^{N} \frac{\sum_{\tilde{\alpha}} I_{\tilde{\alpha}} \otimes I^{\tilde{a}(i)}}{z-z_{i}} d z \xrightarrow{\text { rep. }} w\left(\partial_{\sigma}+\mathcal{L}(\sigma, z)\right) \\
& \sum_{\tilde{a}} I_{\tilde{a}} \otimes I^{\tilde{n}(i)}=k \otimes d^{(i)}+d \otimes k^{(i)}+\sum_{n \in \mathbb{Z}} I_{a,-n} \otimes I_{n}^{a(i)} \\
& \longrightarrow k_{i} \partial_{\sigma}+I_{a} \sum_{n \in \mathbb{Z}} e^{-i n \sigma} I_{n}^{a(i)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}(\sigma, z)=\sum_{j} \frac{F_{j}(\sigma)}{z-\zeta_{j}} \\
& \left\{\mathcal{L}_{1}(\sigma, z), \mathcal{L}_{\underline{2}}\left(\sigma^{\prime}, w\right)\right\}=\left[r_{12}(z, w), \mathcal{L}_{1}(\sigma, z)+\mathcal{Z}_{\underline{1}}\left(\sigma^{\prime}, w\right)\right] \delta\left(\sigma-\sigma^{\prime}\right) \\
& \frac{I_{a} \otimes I^{a}}{w-z} \varphi(w)^{-1}=r+s \\
& +\left[S_{1 \underline{12}}(z, w), \mathcal{Z}_{1}(\sigma, z)-\mathcal{Z}_{\underline{2}}\left(\sigma^{\prime}, w\right)\right] \delta\left(\sigma-\sigma^{\prime}\right) \\
& w=\varphi(z) d z \\
& -2 s_{12}(z, w) \partial_{\sigma} \delta\left(\sigma-\sigma^{\prime}\right)
\end{aligned}
$$

Example: Principal chiral model

Geometric/Lagrangian origin:
Start from ad Chern-Simons action:

$$
S_{\omega}(A)=\frac{i}{4 \pi} \int_{\sum \times C=: X} \quad \begin{array}{cc}
& {[\text { Costello } 113]} \\
{[\text { Costello-Witten-Yamazaki'17,'18] }} & {[\text { Costello-Yamazaki'19] }}
\end{array}
$$

Remark: ω is singular on surface defects:

$$
(z=\{\text { poles of } w\}) \quad D=\bigsqcup_{x \in z} \sum_{x}, \quad \sum_{x}:=\sum x\{x\} .
$$

Nevertheless, $w \wedge C S(A)$ is locally integrable near D.
Behaviour of $S_{w}(A)$ under (finite) gauge transformations

$$
\begin{gathered}
A \xrightarrow{g \in C^{\infty}(X, G)} g A:=-d g g^{-1}+g A g^{-1} ? \\
S_{\omega}(g A)=S_{\omega}(A)+\frac{i}{4 \pi} \int_{X} \omega \wedge d\left\langle g^{-1} d g, A\right\rangle \\
\quad+\frac{i}{24 \pi} \int_{X} \omega \wedge\left\langle g^{-1} d g,\left[g^{-1} d g, g^{-1} d g\right]\right\rangle
\end{gathered}
$$

$\left[\begin{array}{c}\text { Remark: For usual } 3 d C S, \quad S_{3 d}(A)=\frac{k}{4 \pi} \int_{M_{3}} C S(A) \\ S_{3 d}(k \in \mathbb{Z})\end{array}\right]$
Define defect (Lie) group

$$
G^{\underline{z}}:=\prod_{x \in z} G
$$

and defect (Lie) algebra

$$
g^{z}:=\prod_{x \in z} g
$$

with bilinear form $\langle\|, \cdot\rangle_{\omega}: g^{\frac{z}{2}} \times g^{\underline{z}} \longrightarrow \mathbb{C}$:

$$
\langle X X, Y\rangle\rangle_{\omega}=\sum_{x \in \underline{z}} k_{x}\left\langle x_{x}, Y_{x}\right\rangle \quad x=\left(x_{x}\right), Y=\left(Y_{x}\right) \in G^{\underline{z}} .
$$

Consider embedding

$$
\iota: D=\bigsqcup_{x \in \underline{z}} \Sigma_{x} \longleftrightarrow X
$$

Note: Pull back of $g \in C^{\infty}(x, G)$ \& $A \in \Omega^{1}(x, g)$ are:

$$
\begin{aligned}
& \text { - } \iota^{*} g \in C^{\infty}(D, G)=C^{\infty}\left(\bigcup_{n \in E} \Sigma_{x}, G\right) \\
& \cong \prod_{x \in \underline{z}} C^{\infty}\left(\Sigma_{x}, G\right) \cong C^{\infty}\left(\Sigma, G^{\underline{z}}\right) \\
& \text { - } \iota^{*} A \in \Omega^{1}(D, g) \cong \Omega^{1}\left(\Sigma, g^{z}\right) \text {. } \\
& S_{\omega}(g A)=S_{\omega}(A)-\frac{1}{2} \int_{\Sigma}\left\langle\left\langle\left(i^{*} g\right)^{-1} d_{\Sigma}\left(\iota^{*} g\right), \iota^{*} A\right\rangle\right\rangle_{\omega} \\
& {\left[\begin{array}{l}
\text { localised on or } \\
\text { "near " defect } D
\end{array}\right]^{\Sigma}+\frac{1}{12} \int_{\Sigma \times[0,1]}\left\langle\hat{g^{-1}} d \hat{g},\left[\hat{g}^{-1} d \hat{g}_{,}, \hat{g}^{-1} d \hat{g}\right]\right\rangle_{\omega}} \\
& \hat{g} \in C^{\infty}\left(\Sigma \times[0,1], G^{\frac{2}{3}}\right) \\
& \text { set. }\left.\hat{g}\right|_{0}=\iota^{*} g,\left.\hat{g}\right|_{1}=e \text {. }
\end{aligned}
$$

Two ways of ensuring gauge invariance:
Let $k \subset g^{z}$ be an $\frac{\text { isotropic }}{\ell}$ Lie subalgebra.

$$
\langle\langle X, Y\rangle\rangle_{\omega}=0 \quad \forall x, Y \in k .
$$

Let $K \subset G^{\underline{b}}$ corresponding connected Lie subgroup.

1) Strict boundary conditions

Consider bulk fields $A \in \Omega^{1}(x, g)$ and gange transformations $q \in C^{\infty}(x, G)$ satisfying

- $\iota^{*} A \in \Omega^{1}(\Sigma, k) \subset \Omega^{1}\left(\Sigma, q^{\frac{b}{2}}\right)$
- $\iota^{*} g \in C^{\infty}(\Sigma, K) \subset C^{\infty}\left(\Sigma, G^{z}\right)$

$$
\begin{aligned}
& \iota^{*} A=\left(\left.A\right|_{x}\right)_{x \in \underline{z}} \in \Omega^{1}(\Sigma, k) \\
& \left.A\right|_{x} \in \Omega^{1}(\Sigma, g) \\
& \text { "non-local" boundary } \\
& \text { condition on } \mathbb{C P} \text { ! }
\end{aligned}
$$

Theorem (Benini-Schenkel-BV)
$S_{\omega}(A)$ is gauge invariant.
Summary: Strict boundary conditions imposed via a pullback construction:

$$
\begin{aligned}
& \text { Bulk finds }
\end{aligned}
$$

Defect fields
2) Homotopical boundary conditions

Gauge fields are not compared by equality but rather via gauge transformations.
$m \rightarrow$ Impose boundary conditions via homotopy pullback (ie. impose them up to gang transformations):

Bulk fields
$\left.\begin{array}{l}\text { homotopy } \ldots \ldots\left\{\begin{array}{l}\text { Bulk fred } \\ \text { pull back }\end{array} \ldots \Omega^{1}(x, g)\right. \\ \cdot g \in C^{\infty}(x, G)\end{array}\right\}$

A model for the homotopy pullback:

- Fields:

$$
\begin{aligned}
& \left.\begin{array}{l}
A \in \Omega^{1}(x, g) \\
\text { Sedge mode }_{h} \in C^{\infty}\left(\Sigma, g^{\xi}\right)
\end{array}\right\}{ }^{h}\left(\imath^{*} A\right)=B \in \Omega^{1}(\Sigma, k) .
\end{aligned}
$$

- Gauge transformations: $\left(g \in C^{\infty}(x, G), h \in C^{\infty}(\Sigma, K)\right)$

$$
\begin{aligned}
& A \mapsto{ }^{g} A=-d g g^{-1}+g A g^{-1} \\
& h \longmapsto k h\left(l^{+} g\right)^{-1}
\end{aligned}
$$

Couple edge mode to gauge field:

$$
\begin{aligned}
S_{\omega}^{e x t}(A, h):=S_{\omega}(A)-\frac{1}{2} \int_{\Sigma} & \left\langle\left\langle h^{-1} d_{\Sigma} h, L^{*} A\right\rangle_{\omega}\right. \\
& +\frac{1}{12} \int_{\Sigma \times[0,1]}\left\langle\begin{array}{l}
\\
\end{array} \hat{h}^{-1} d \hat{h},\left[\hat{h}^{-1} d \hat{h}, \hat{h}^{-1} d \hat{h}\right]\right\rangle_{\omega} \\
& \hat{h} \in C^{\infty}\left(\sum \times[0,1)\right) \\
& \text { st. }\left.\hat{h}\right|_{0}=h,\left.\hat{h}\right|_{1}=e .
\end{aligned}
$$

Theorem (Benini-Schenkel-BV)
Extended action $S_{\omega}^{e x t}(A, h)$ is gauge invariant.
From $4 d C S$ +edge mode to $2 d$ IFTs
Want to turn 4dCS gauge field

$$
A=A_{\sigma}(\sigma, \tau, z) d \sigma+A_{\tau}(\sigma, \tau, z) d \tau+A_{\bar{z}}(\sigma, \tau, z) d \bar{z}
$$

into the 2dIFT Lax connection

$$
\mathcal{L}(z)=\mathscr{L}(\sigma, \tau, z) d \sigma+\mathcal{M}(\sigma, \tau, z) d \tau
$$

- Step 1: Restrict attention to

$$
\mathcal{L}:=A=A_{\sigma}(\sigma, \tau, z) d \sigma+A_{\tau}(\sigma, \tau, z) d \tau \in \Omega^{1,0,0}(x, g)
$$

and $g \in C^{\infty}(X, G)$ such that $\bar{\partial} g g^{-1}=0$.
Extended action now reads:

$$
\begin{gathered}
S_{\omega}^{e x t}(\mathcal{L}, h)=\frac{i}{4 \pi} \int_{x} \omega \wedge\langle\mathcal{L}, \bar{\gamma} \mathcal{L}\rangle-\frac{1}{2} \int_{\Sigma}\left\langle h^{-1} d_{\Sigma} h, \iota^{*} \mathcal{L}\right\rangle_{\omega} \\
{\left[h\left(\imath^{*} \mathcal{L}\right) \in \Omega^{1}(\Sigma, k)\right]+\frac{1}{12} \int_{\Sigma \times[0,1]}\left\langle\hat{h}^{-1} d \hat{h},\left[\hat{h}^{-1} d \hat{h}, \hat{h}^{-1} d \hat{h}\right]\right\rangle_{\omega}}
\end{gathered}
$$

Equations of motion:

* Bulk e.om: $\bar{\partial} \mathcal{L}=0$ on $X=\Sigma \times\left(\mathbb{C} P^{\wedge} \backslash\left\{s_{j}\right\}\right)$
* Defect eon: $d_{\Sigma}\left(\iota^{*} L\right)+\frac{1}{2}\left[i^{*} L, \iota^{*} L\right]=0$ on Σ.
$\left[\begin{array}{r}\text { N.B.: Flat ness of ** } \mathcal{L} \in \Omega^{1}\left(\Sigma, G^{2}\right) \\ \text { and not of } \mathcal{L} \in \Omega^{1}(x, G)\end{array}\right]$
- Step 2: Restrict attention to particular solutions of bulk e.o.m.:
Call $\mathcal{L} \in \Omega^{1,0,0}(X, g)$ admissible if it is:
(a) meromorphic on $\mathbb{C} P^{1}$ with poler at \underline{S} (zeroes of w)
(b) such that wa \mathcal{L} is bounded near \underline{S},
(c) and $w \wedge\left(d \sum \mathcal{L}+\frac{1}{2}[\mathcal{L}, \mathcal{L}]\right)$ is bounded near \subseteq.

Proposition: If $\mathcal{L} \in \Omega^{1,0,0}(x, q)$ is admissible then

$$
d_{\Sigma}\left(\iota^{*} \mathcal{L}\right)+\frac{1}{2}\left[L^{*} \mathcal{L}, \iota^{*} \mathcal{L}\right]=0 \text { on } \Sigma \Leftrightarrow d_{\Sigma} \mathcal{L}+\frac{1}{2}[L, L]=0 \text { on } X \text {. }
$$

(defect e.0.m.)
Extended action now reads:

$$
\begin{gathered}
S_{\omega}^{e x t}(\mathcal{L}, h)=-\frac{1}{2} \int_{\Sigma}\left\langle\left\langle h^{-1} d_{\Sigma} h, \iota^{*} \mathcal{L}\right\rangle_{\omega}+\frac{1}{12} \int\left\langle\hat{h}^{-1} d \hat{h},\left[\hat{h} \cdot \hat{h} \hat{h}, \hat{h}^{-1} d \hat{h}\right]\right\rangle\right\rangle_{\omega} \\
{[h, 1]}
\end{gathered}
$$

and equations of motion now read:

$$
d_{\Sigma} \mathcal{L}+\frac{1}{2}[L, L]=0 \text { on } X \text {. }
$$

- Step 3: Solve the constraint

$$
{ }^{n}\left(\iota^{*} \mathcal{L}\right) \in \Omega^{1}(\Sigma, k)
$$

for admissible \mathcal{L} in terms of $h \in C^{\infty}\left(\Sigma, G^{E}\right)$.
We assume w has a double pole at ∞, and partially fix grange invariance to fix components of $h \in C^{\infty}\left(\Sigma, G^{\underline{z}}\right)$ at ∞ : $\left.\quad \underline{z}^{\prime}:=\underline{z} \backslash\{\infty\}\right)$

$$
\begin{aligned}
& h \in C^{\infty}\left(\Sigma, G^{\frac{z}{2}}\right) \leadsto l \in C^{\infty}\left(\Sigma, G^{z^{\prime}}\right) \\
& \iota: D=\bigsqcup_{x \in \underline{Z}} \Sigma_{x} \longrightarrow X \sim j: D^{\prime}=\bigsqcup_{x \in z^{2}} \Sigma_{x} \longleftrightarrow X \\
& { }^{h}\left(L^{*} \mathcal{L}\right) \in \Omega^{1}(\Sigma, k) \leadsto{ }^{l}\left(j^{*} \mathcal{L}\right) \in \Omega^{1}\left(\Sigma, k^{\prime}\right) . \\
& k=\varepsilon_{\infty} g \oplus h^{\prime} \subset q^{z}
\end{aligned}
$$

To satisfy admissibility conditions (a) \& (b), take:

$$
\mathcal{L}=\sum_{y \in \underline{\zeta}} \frac{\mathcal{L}_{y}}{z-y} \quad \cdot \underline{\zeta} \text { set of zeroes of } \omega
$$

To satisfy admissibility condition (c), require

$$
\varepsilon(j * \mathcal{L})=*\left(j^{*} \mathcal{L}\right) \quad\left[\check{S}_{\text {Sever }}\right. \text { '16] }
$$

where $\varepsilon: g^{\underline{z}^{\prime}} \underline{\underline{\underline{ }}} g^{\underline{z}^{\prime}}$ is defined by $\left(\underline{\zeta}=\underline{\underline{\varphi}}^{+} U \underline{\zeta}^{-}\right)$

$$
\begin{aligned}
& g^{z^{\prime}} \ni X \longleftarrow \underset{\tilde{\underline{n}}^{*}}{\left(|\underline{k}|=\left|z^{\prime}\right|\right)} \sum_{y \in \underline{S}^{+}} \frac{f_{y}}{z-y}+\sum_{y \in \underline{S}^{5}} \frac{f_{y}}{z-y} \\
& \varepsilon \downarrow \downarrow \\
& g^{z^{\prime}} \ni \varepsilon x \longleftarrow \cong \xlongequal[j^{*}]{\cong} \sum_{y \in \underline{s}^{+}} \frac{f_{y}}{z-y}-\sum_{y \in \underline{s}^{-}} \frac{f_{y}}{z-y}
\end{aligned}
$$

We have (under mild assumptions)

$$
g^{g^{z^{\prime}}}=A d l^{-1} k^{\prime} \oplus \xi A_{d}^{-1} k^{\prime} \quad \forall l \in G^{z^{\prime}} .
$$

Define $P_{l}: g^{q^{\prime}} \longrightarrow \xi A_{l}{ }_{l}^{-1} k^{\prime}$ projector with $k_{e r} P_{l}=A_{l} l^{-1} k^{\prime}$.
Proposition. (Lacroix-BV) There is a unique solution of the constraint ${ }^{l}(j * L) \in \Omega^{1}\left(\Sigma, k^{\prime}\right)$ such that $\varepsilon(j * L)=*(j * L)$, given by

$$
j * \mathcal{L}=\left(1-P_{l}\right) \varepsilon\left(l^{-1} * d_{\Sigma} l\right)+P_{l}\left(l^{-1} d_{\Sigma} l\right) .
$$

Resulting $2 d$ integrable σ-model on $K^{\prime} \backslash G^{z^{\prime}}$,

$$
\begin{aligned}
& S_{\omega}^{\text {ext }}(l)=-\frac{1}{2} \int_{\Sigma}\left\langle\left\langle l^{-1} d_{\Sigma} \ell,\left(1-P_{l}\right) \xi\left(\ell^{-1}+d_{\Sigma} l\right)+P_{l}\left(l^{-1} d_{\Sigma} l\right)\right\rangle_{\omega}\right. \\
&+\frac{1}{12} \int\left\langle\left\langle\hat{l}^{-1} d \hat{l},\left[\hat{l}-d \hat{l}, \hat{l}^{-1} d \hat{l}\right]\right\rangle_{\omega}\right. \\
& \Sigma \times[0,1]
\end{aligned}
$$

known as an \mathcal{E}-model.
[Klimcik_Ševera'95]
Example: $\omega=\frac{\left(z^{2}-1\right)\left(b^{2}-z^{2}\right)}{z^{4}} d z \quad(1>b>0)$

Conclusions:

- Passage from hd to $2 d$ via edge modes:

* Edge modes via homotopy pull back.
[Mathien-Murray-Schenkel-Teh '20]
* Generalises to higher order poles in w.
* More general solution to constraint?
- Hamitonian analysis?
* Hamiltonian integrability (r-matrix, ...)
* Affine Gaudin model description?

$$
\left\{\begin{array}{c}
\text { boundary conditions } \\
\text { in } 4 d C S \text { theory }
\end{array}\right\} \stackrel{?}{\longleftrightarrow}\left\{\begin{array}{c}
\text { representations } \\
\text { of } \tilde{g}
\end{array}\right\}
$$

- Quantization
* Relationship between quantum hd CS \& 2dQIFT?
* Quantum $4 d C S$ vs. affine quantum Gaudin model?
* ...

