
Line Defects and Renormalization Group Flows

Zohar Komargodski

Simons Center for Geometry and Physics, Stony Brook, NY

with Gabriel Cuomo, Avia Raviv-Moshe 2108.01117 and
upcoming work with Gabriel Cuomo, Mark Mezei, Avia

Raviv-Moshe

Zohar Komargodski Line Defects and Renormalization Group Flows



The subject of line defects has been historically extremely
productive. The Kondo defect (which is essentially a line defect in
2d) has led to both the renormalization group [Wilson...] and to
substantial progress on integrability [Andrei,
Tsvelick-Wiegmann...]. The topic of this talk is to explore line
defects in higher dimensions.
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We are already familiar with many constructions of line defects in
d > 2:

Wilson/’t Hooft loops.

Twist (symmetry) defects

SPT defects

Worldlines of anyons in 2+1 dimensions

· · ·
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This talk will focus on two subjects:

RG flows on line defects

The limit of “heavy” line defects

We will discuss various applications of both subjects.
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We will consider lines in a d-dimensional CFT. Consider a straight
line. It can be conformal or non-conformal. A conformal line
preserves

SL(2,R)× SO(d − 1)

(we assume the line has no transverse spin). It describes a critical
point-like impurity in space.
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An interesting observable for such a line is its defect entropy (not
the same as entanglement entropy for d > 2). We make the line
into a circle and compute the expectation value of the circle.

s =

(
1− R

∂

∂R

)
log〈L〉 ≡ log g .

From conformal invariance it would seem that 〈L〉 is
R-independent but in fact it is possible that there is linear in R
divergence in log〈L〉 which is just mass-renormalization of the
impurity. This cancels out from s.

Zohar Komargodski Line Defects and Renormalization Group Flows



Therefore s is a scheme-independent intrinsic observable. At the
fixed point of the line defect the value of s is also called g . For line
defects in a 2+1 dimensional topological theory, g is called the
“quantum dimension.” When the bulk is a topological theory, it
always satisfies g ≥ 1. g = 1 for Abelian anyons (one-form
symmetry lines).
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More generally, we know that g ≥ 0 but it is not necessarily true
that g ≥ 1.
In the general case, line defects are called topological if you can
wiggle the worldline infinitesimally around without changing the
partition function. The response to wiggling the line is called the
displacement operator D i (t) and a line is called topological if

D i (t) = 0 .

If a topological line is invertible then clearly g = 1.
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Defect operators are classified by their SL(2,R)× SO(d − 1)
quantum numbers. For instance for the trivial line defect (the
completely transparent line), or for any invertible topological line,
the defect operators coincide with the bulk operators. More
generally, the space of defect operators has nothing to do with the
bulk operators.
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In the event that relevant defect operators exist, we can add it to
the action M1−∆

0

∫
dtO(t). M0 becomes the physical scale of the

flow. We can again study the circular line and consider
s =

(
1− R ∂

∂R

)
log〈L〉 which now becomes a nontrivial function

s = s(M0R)

We have

s(M0R)→
{

log gUV as R → 0
log gIR as R →∞
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For conformal defects, the energy momentum tensor of the defect
vanishes TD = 0 since it has only one index and it has to be
traceless. Hence, a conformal line defect cannot support localized
energy [e.g. Herzog-Huang].
For non-conformal defects, TD measures the energy density on the
defect and it is a nonzero operator.
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The main result is the following identity

M0
∂s

∂M0
= −R2

∫
dφ1dφ2〈TD(φ1)TD(φ2)〉c (1− cos(φ1 − φ2)) .

Since 〈TD(φ1)TD(φ2)〉c ≥ 0 at separated points and since
(1− cos(φ1 − φ2)) ≥ 0 we have that

M0
∂s

∂M0
≤ 0 ,

and therefore also gUV ≥ gIR .
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The main idea of the derivation is to promote the massive
perturbation to a time dependent one

M1−∆
0

∫
dtO(t) −→ M1−∆

0

∫
dte(1−∆)Φ(t)O(t) .

Φ(t) is usually called the dilaton though it has nothing to do with
the string theory dilaton. Φ(t) is a classical field (background
field).
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The Ward identities of the ambient d-dimensional CFT impose
some relations between theories with different profiles Φ(t). The
main relation we will use comes from integrating over a surface
wrapping the circle defect

Qξ =

∫
torus

dd−1ΣµTµνξ
ν .

On the one hand it must be that

Qξ = 0

from the conformal invariance of the bulk vacuum. On the other
hand we shrink the torus around the line and create a new line
defect.
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The main computation to do is therefore to find which new line
defect is created by shrinking the torus around the line defect. The
answer is that you create a new defect with

Φ̃ = Φ + α
(
ξ̇D + ξDΦ̇

)
,

where ξD is a conformal Killing vector restricted to the defect and
α is an infinitesimal parameter. By choosing Φ(t) and ξD
appropriately this can be used to derive an interesting constraint
for the correlation functions on circular defects:

R

∫
dφ〈TD(φ)〉 = R2

∫
dφ1dφ2〈TD(φ1)TD(φ2)〉c cos(φ1 − φ2) .

Zohar Komargodski Line Defects and Renormalization Group Flows



This constraint can be manipulated a little and turned into the
sum rule that leads to M0

∂s
∂M0
≤ 0.

This generalizes the familiar results of [Affleck-Ludwig,
Friedan-Konechny] to line defects/impurities in higher dimensions.

Note that it follows that g is independent of exactly marginal
defect couplings.
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A very simple sanity check of this result is the flow
[Polchinski-Sully]

Wilson Loop −→ Maldacena−Wilson Loop

We define the defect

W ζ = TrPe
∫
dt(iAµẋµ+ζΦm(x)θm|ẋ |)

ζ is a parameter which flows, θ2 = 1, and at weak ’t Hooft
coupling and large N we find

βζ = − λ

8π2
ζ(1− ζ2) +O(λ2)

we checked by a computation of 〈TD(φ1)TD(φ2)〉c that the sum
rule is satisfied and one can also find the defect entropy function
explicitly and verify that it is monotonically decreasing. We used
many results of [Beccaria-Giombi-Tseytlin].
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An even simpler model is to start from the trivial defect in the free
theory and since the spectrum of defect operators is the same as
the spectrum of bulk operators restricted to the defect we can
consider ∫

ddx
1

2
(∂φ)2 + M

4−d
2

0

∫
defect

dt φ

For a circular defect of radius R we can compute the partition
function analytically and find the defect entropy

s = π(d − 3)
21−dπ

3
2
−dΓ

(
3
2 −

d
2

)
Γ
(
d
2 − 1

)
Γ
(
2− d

2

) (RM0)4−d
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The defect entropy decreases monotonically as expected, the
identity relating the defect entropy flow to 〈TDTD〉c is satisfied

s(M0R)→
{

0 as R → 0
−∞ as R →∞

In the ultraviolet we have the trivial defect and in the infrared we
have s → −∞, so the flow does not quite end at an IR DCFT. It is
tempting to conjecture that such a non-terminating flow can only
happen in theories with a bulk moduli space of vacua.

In d = 4 the line defect is conformal for all ζ and it was studied in
[Kapustin]. It has g = 1 but it is not a trivial defect and other
observables do depend on ζ.
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The problem of line defects is quite interesting and nontrivial even
when the bulk theory is completely free. Let us consider 3 free
fields φa in d dimensions ∫

ddx
1

2
(∂φa)2

and a defect on a line, which is an impurity in the spin S
representation of the bulk global SO(3) symmetry [Sengupta,
Sachdev-Buragohain-Vojta, Liu-Shapourian-Vishwanath-Metlitski]:

Pe iζ
∫
dtφaT a

with T a the (2S + 1)× (2S + 1) matrices of the su(2) Lie algebra.
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This physically describes a spin S impurity in a ferromagnet,
although for simplicity we are not at the true interacting bulk fixed
point. Pe iζ

∫
dtφaT a

defines an SU(2) matrix transforming under
the bulk symmetry by Pe iζ

∫
dtφaT a → gPe iζ

∫
dtφaT a

g−1. The case
of the impurity being truly point-like and interacting in an SO(3)
invariant fashion with the bulk thus corresponds to

TrS

(
Pe iζ

∫
dtφaT a

)
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Note that this looks like a Wilson line but there is no gauge
symmetry in this problem. And even though the bulk is free,
computing the defect entropy, scaling dimensions of defect
operators and so on is difficult.
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The parameter ζ is relevant for d < 4 and marginally irrelevant in
d = 4 for all S . (The free defect is stable in d = 4.)

log g = log(2S + 1)− (4− d)

8
S2ζ2 +

ζ4S2

32π2
+ · · ·

βζ =
1

2
(d − 4)ζ +

1

4π2
ζ3 + · · ·

The UV DCFT, ζ = 0, is not the trivial DCFT; it is a decoupled
impurity with 2S + 1 states and g = 2S + 1. It is completely
transparent and topological but it is not the trivial line, as can be
seen from the space of defect operators in the UV theory.

Zohar Komargodski Line Defects and Renormalization Group Flows



log g = log(2S + 1)− (4− d)

8
S2ζ2 +

ζ4S2

32π2
+ · · ·

βζ =
1

2
(d − 4)ζ +

1

4π2
ζ3 + · · ·

We see a weakly coupled fixed point with ζ2 = 2π2(4− d) and
log gIR = log(2S + 1)− 1

8S
2π2(4− d)2 < log gUV .

This fixed point is stable for SO(3) preserving perturbations.
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In the analysis above we have assumed that S is fixed while 4− d
and ζ2 ∼ 4− d are the smallest parameters.

A possible higher order term in log g is ζ6S4 and in βζ it is ζ5S2.
This is just because SU(2) generators scale like T a ∼ S .
Therefore, naively, for S ∼ (4− d)−1/2 the expansion breaks down.

It turns out that there are vast cancelations and the expansion
reorganizes in terms of ζ2S so it breaks down for S ∼ (4− d)−1.
Furthermore, the problem turns out to be solvable for large S and
arbitrary fixed ζ2S ≡ α.
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Let us describe the main idea of how one would approach such a
limit of ”heavy” defects. It seems pretty difficult starting from the
expression

TrS

(
Peζ

∫
dtφaT a

)
.

An alternative viewpoint is to introduce first order variables on the
line defect z = (z1, z2) and represent the Wilson line with the
action

Sdefect =

(
S +

1

2

)∫
dt

(
z̄ ż +

1

2
ζzσaz̄φa

)
.

This is subject to the constraint zz̄ = 2 and the gauge invariance
z(t)→ z(t)e iα(t), so the configuration space is really just the
two-sphere.
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Sdefect =

(
S +

1

2

)∫
dt

(
z̄ ż +

1

2
ζzσaz̄φa

)
.

This representation of the Wilson line as a first order kinetic term
on S2 is essentially the co-adjoint orbit method. The advantage of
this approach is that ~ ∼ 1

S , so it allows a systematic expansion in

S−1. To see it in more detail rescale φ→ φ(S + 1/2)1/2, the
whole action including the bulk becomes

Sdefect =

(
S +

1

2

)∫
ddx

1

2
(∂φa)2

+

(
S +

1

2

)∫
dt

(
z̄ ż +

1

2
ζ (S + 1/2)1/2 zσaz̄φa

)
.

Therefore at large S and fixed ζ2S we have a new emergent
classical limit and we can quantize around its saddle points.
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Such a semi-classical approach towards large quantum numbers
was studied in [Badel-Cuomo-Monin-Rattazzi] in the context of
bulk scaling dimensions in the O(2) model. A similar semi-classical
approach to large quantum numbers in supersymmetric theories
was studied by many other authors.
Here this idea is applied for a line defect in the (free) O(3) model.
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This allows to perform a resummation of various terms in the beta
function and log g and many other observables. Results from the
classical limit can be compared with explicit diagrammatic
computations in some cases.
Example: the g function in this double scaling limit and for d = 4
is

log g = log(2S + 1) +
1

2
log

(
1 +

ζ4S2

16π2

)
+O(S−1) ,

expanding it out, the first nontrivial term agrees with an explicit
laborious perturbative computation that we have quoted previously.
We also found a new fixed point in this limit, that we are presently
studying. One can verify the g theorem for flows in this limit.
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This technology of the large S expansion can be used for the
interacting Wilson Fisher model as well.
This technology of the large S expansion also transfers almost
verbatim to Wilson lines in large representations. We have so far
used these tools to study supersymmetric and nonsupersymmetric
Wilson loops in SU(2) N = 4 SYM theory.
It is encouraging that one can indeed reproduce detailed
predictions of localization through this emergent classical limit.
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The higher dimensional g theorem challenges the connection
between monotonicity theorems and entanglement entropy.
See [Casini – Salazar-Landea – Torroba] for the d = 2 case.

Is there is a nontrivial lower bound on g in theories with no
bulk moduli? Some d = 2 bootstrap work on this can be
found in [Friedan – Konechny – Schmidt-Colinet]

Being that g is defined by making the defect into a circle in
space-time, it is challenging to think about VEV flows. VEV
flows are when the defect is not deformed by an operator, but
rather, some defect operator has a nontrivial VEV.

It would be interesting to combine the limit of heavy defects
with bulk large N and also make contact with experimental
results on magnetic impurities.

Upon integrating out the bulk, we can think about the defect
as a non local QM. Sometimes it looks like familiar disordered
systems from condensed matter. It would be nice to explore
this further.

Zohar Komargodski Line Defects and Renormalization Group Flows



It would be nice to make contact with AdS/CFT. Can our
sum rule for the defect entropy flow be obtained? Is there a
useful description of Wilson loops in a very large
representation? Connection to the integrability techniques for
line defects in N = 4 in the planar limit [Giombi-Komatsu...]?

It is well understood how to apply the conformal bootstrap
philosophy for line defects (or more general defects)
[Liendo-Rastelli-van Rees], [Billo-Goncalves-Lauria-Meineri],
[Lauria-Liendo-van Rees -Zhao]... It would be nice to explore
the fixed points we have found for the magnetic impurity and
compare notes.
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Thank You!
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