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Many interesting two-dimensional statistical mechanical models are conveniently
described in terms of knot and link invariants.

This observation was made in the ’80s, but mostly neglected since.

The excitement about topological guantum computation ignited condensed-matter
physicists’ interest in knot invariants, and the time is ripe for (re)applying them to

statistical mechanics.

The key mathematics | exploit is that a tensor category gives a consistent set of rules
that allow graphs to be manipulated without changing the topological invariants.

The moral of the story is: draw pictures!



Outline

1. Fusion categories

2. Defining lattice models using fusion categories

* Geometric (e.g. counting loops)
* Spins/heights (e.g. Ising/Potts/hard squares/RSOS)
* Quantum Hamiltonians (e.g. spin/anyon chains)

3. Integrable lattice models via Yang-Baxter
4. Braided tensor categories

5. Baxterization via fractional-spin conserved currents

Will give a simple formula for the Boltzmann weights in terms of category
data that guarantees the existence of conserved currents. In all known
examples, these weights also satisfy the Yang-Baxter equation.



1. Fusion categories

Associates a topological invariant to a fusion diagram, | 5

a labeled planar graph built from trivalent vertices.
2

The edges are labeled by the (finite number of) objects a, b, c, ...

/ Non-negative integer
The objects satisfy a fusion algebra @ @ b = @ chb C

C

For each IV, # 0, a trivalent vertex

For example, the tensor products of representations of (the quantum deformation of)
SO(n) form a fusion algebra. Identity rep is equivalent to no line.



Evaluating the fusion diagram

guantum dimensions da
is done using data from a category C :

F symbols:  F},, [7“ Z]
a

r
bubble removal: a b — 5 drds b
ab d
S

Setting a=b=0 allows a closed loop to be removed completely: O = dy

F move:

F moves preserve the evaluations. Doing them and bubble removal repeatedly
express a fusion diagram as a sum over closed loops, and hence a number.



Lots of identities and consistency relations

= /daddyd, Fyy [‘;‘ Z] = \/dod,dyd, Fya [>C< 7]

a

A famous consistency relation is the pentagon equation, which is of the form

FF:ZFFF

| view the category and its data as input to the manipulations.



2. Lattice models from fusion categories

The story long predates fusion categories:
Proc. Roy. Soc. Lond. A. 322, 251-280 (1971)
Printed in Great Britain
Relations between the ‘percolation’ and ‘colouring’
problem and other|graph-theoretical problems ]associated with

regular planar Jatfices: some exact results for
the “percolation’ problem

By H. N. V. TEMPERLEY
Department of Applied Mathematics, University College, Swansea, Wales, U K.
Axp E. H. Liest

Department of Mathematics, Massachussetts Institute of Technology,
Cambridge, Mass., U.S.A.

Aka Tutte polynomial
Aka Potts model partition function

A transfer-matrix approach is introduced to calculab& the ‘Whitney polynomial’ }f a planar
lattice, which is a generalization of the ‘percolation’ and 'colouring’ problems. This new
approach turns out to be equivalent to calculating eigenvalues and traces of Heisenberg type
operators on an auxiliary lattice which are( very closely related to problems of “ice’] or
‘hydrogen-bond’ type that have been solved analytloally by Lieb (1967a to d). Solutions for

aka six-vertex model/XXZ chain



Temperley and Lieb showed how the transfer matrices of seemingly different
models could be written in terms of operators obeying the same algebra.

With appropriate choices of boundary conditions, their partition functions can
be related exactly.

To relate to loop and to local models, another innovation was required:

ON THE RANDOM-CLUSTER MODEL
I. INTRODUCTION AND RELATION TO OTHER MODELS

C. M. FORTUIN and P. W. KASTELEYN
Instituut Loventz, Rijhsuniversiteit te Leiden, Nedevland

Received 5 July 1971

The loops surround the clusters

Synopsis
The random-cluster model is defined as a model for phase transitions and other
phenomena in Iattice systems, or more generally in systems with a graph structure.
The model is characterized by a (probability) measure on a graph and a real para-
meter «. By specifying —2; odel covers
the percolation model, [the Ising model, the Ashkm—Teller—Potts model|with 3, 4,
states per atom, respectively, and thereby, contains intormation on graph- colourlng
problems; in the limit « | O it describes linear resistance networks. It is shown that
the function which for the random-cluster model plays the role of a partition function,
is a generalization of the dichromatic polynomial earlier introduced by Tutte, and
elated polynomials.




These results can be systematized and generalized by
defining Boltzmann weights using a fusion category.

Three classes of models, all closely related:

 Geometric (non-local weights, e.g. counting loops)
* Spins/heights (local weights, e.g. Ising/Potts/hard squares)

* Quantum Hamiltonians (e.g. spin/anyon chains)



The completely packed loop/
random-cluster/Q-state Potts models

Every edge of the square lattice is covered by non-crossing loops; the only
degrees of freedom are how they avoid at each vertex.

Z= 3 g#loorsy < 4

loop
configurations

. . d is the weight per loop,

v the weight per vertical avoidance,
h the weight per horizontal avoidance

Takes form Z = Z (topological weight) x (local weights)

loops



The Boltzmann weights, pictorially

Picture loop model Boltzmann weights on the square lattice as

- o)+ X<

5, S < »: S »:
2t 9.0.0.9.0.9,
> % » » » ¥

where eval means to expand out each vertex to get loops with the appropriate local
weights, then sum over all loop configurations with weight d per loop.

Z= 3 qpeory X

loop
configurations



Loops and fusion categories

This loop model can be written in terms of the fusion category SU(Z)k

The k+1 objects are labelled 0, %, 1, ... ,%

They obey a truncated version of the fusion rules of the representations of SL(2)

e.g 1®1—0@1
2792

The lines making up the loops are labeled by the object %

When two lines meet in the fusion category model, they fuse:

1 1 1 %
5 2 2
1 another 0 or 1
0 or basis: , ,
1/\ 1 1 : T3 2

N|—
[\V]

N |—
N~

no|
|
N
N|—=



\./
When two lines meet in the loop model, they avoid: > < or
N\

1 11
1 5 5 1
N’ | 0

Basis 1: 0 or 1 Basis 2: or
N\ 1 3
3 2 2

1 1
2 2

N —
N |—
N | =
N~
|=

v

N —
N —
N —

F moves give two linear relations among the four diagrams:

G :

\/ dy=d>—1=_ k:—7|T—2
>NV< B \/dil _1 sin 725
d N\ d

Can rewrite degrees of freedom in any fashion desired.




Advantages of using categories

- Can define geometric models for any category, any label on the lines:

X — Z Ay (u) y4 i Zeval []—"} X local weights
u N ] -

Local weights depend on "“spectral parameter’” u

- Allows local models to be rewritten in terms of topological data

- Derive new properties, even for ancient models like the Ising and Potts models



Topological structure of local models

“"Height” degrees of freedom live on the graph dual to the fusion diagram

.
_ Y
Heights are obJects ~ . b o Fhx [ ] Fxne [b p]

\/d
in the category ,O \.\\ X

Through the miracle of shadow world, can define local Boltzmann weights for the
heights so that the partition function is the same as the corresponding geometric model!

Temperley-Lieb, Baxter-Kelland-Wu, Pasquier, Jones, Reshetikhin, Turaev-Viro, Barrett-Westbury ...

Using shadow world, critical Ising, Potts, RSOS, 8-vertex, ... models all can be written in

terms of topological data from a fusion category, e.g.
hl
N\ A o [dudn
a B B b — Oab
dadb

w
h

)



Lattice topological defects

Fusion categories give a general and systematic way of finding
lattice topological defects with many nice properties.

* Topologically invariant junctions of defect lines

 Many generalisations of Kramers-Wannier duality.

* Understand exact degeneracies in gapped systems

* Exact lattice derivation of ratios of boundary g-factors

* By doing modular transformations, get momentum quantization
conditions that yield exact lattice results for conformal spins, giving
strong constraints on any continuum limit.

Aasen, Fendley and Mong



3.Integrability from the Yang-Baxter equation

Sums of products of three Boltzmann weights obey

u+u’ u+u

A N

Note u and u” have changed places: use to construct commuting transfer matrices and the
resulting local conserved currents needed for integrability.

-8 | | o
o\ Heights: .
/ /
/
/
\
\
\ \ / /
== == i need to sum over central height I = = = -




The YBE for completely packed loops

The YBE gives functional equations for the Boltzmann weights.

hw)
v(u)

w)wu+uwu)+d wwu)y+wu)+wu)—wu+u')=0

For the loop model above, get for the local weight ratio w(u)=

Parametrize the weight per loop by d = q + q_l. Then the solution is

q—leiu . qe—iu

w(u) =

Using shadow world gives local Boltzmann weights for the Andrews-Baxter-
Forrester height models at their integrable critical points.

How does something so simple arise from such a complicated equation?



4. Braiding

From a very lowbrow perspective, the key innovation of Jones was to show
that the Temperley-Lieb algebra (the SU(Z)k fusion category) can be
extended to give representations of the braid group.

A knot or link invariant such as the Jones polynomial depends only on the
topology of the knot. To compute, project the knot/link onto the plane:




The skein relation resolves each over/undercrossing to turn each knot/link
into a sum over planar fusion diagrams.

For the Jones polynomial, loops! The Kauffmann bracket:

X )
X

Resolving turns a link into a sum over graphs of closed loops. To get the
Jones polynomial (in g), evaluate by replacing each loop with

l\)ll—l

l\3|b—‘



To yield a topological invariant, must satisfy the Reidemeister moves:

R g




One subtlety turns out to be a feature, not a bug.

#1; ) /\
ﬂ

But instead:

l\JI»—t

wloo

f\

To undo, make eachglink a ribbon, and keep track of twists. Topological invariant after
multiplying by (—¢)2" , where w = #(signed twists) = writhe.



Braided tensor categories

are fusion categories with more data, the spins s,

C b c Vabe = 1

b
\ Qe \ / Q. — cimse

.0, |

Don’t need any more data, as can use this with F move to get braiding

C\ ’ dC\ b d QQC\ °
a . a beéc
/\ :za:\/dbdc ; _;\/dbdc Q, £
b c
b c




Baxterizing

The initial work by Jones prompted much work finding knot and link
invariants from statistical-mechanical models in the mid to late '80s.

Jones then suggested people try the converse: to Baxterize is to
start with a knot invariant and then try to generalize to a solution of the YBE
and hence a lattice integrable model.

Easier said than done, since the YBE is trilinear in the Boltzmann weights.

A somewhat successful approach came from exploiting the representation
theory of quantum-group algebras.

Jimbo; Zhang, Gould, Bracken, Delius

Their solution ends up involving very little of the quantum group.
Suggests there is a simpler and more general way...



5. Baxterization from fractional-spin
conserved currents

The category gives a natural and general way of defining Boltzmann weights
that admit such currents.

The ensuing linear conditions on the weights can be solved easily.

P p
X = 3 Addw) :|</
* p
-

o,
\

A, (u) B ei“QX +Q,

Ag(u) Q4 e,
L v,

All known examples also satisfy Yang-Baxter!



QUANTUM GROUP SYMMETRIES IN TWO-DIMENSIONAL LATTICE
QUANTUM FIELD THEORY

Denis BERNARD

Service de Physique Théorique de Saclay™®, F-91191 Gif-sur-Yvette, France

Giovanni FELDER**
Institus fiir Theoretische Physik, ETH—Hénggerberg, 8093 Ziirich, Switzerland

Received 2 April 1991

We present a general theory of non-local conserved currents|in two-dimensional quantum
field theory in the lattice approxiﬂﬂ'ﬂmu. group symmetries. Various

examples are studied.

The graphical representation of egs. (2.7) and (2.8) is then

S o



Recall for loops: X = U(U) >< + h(u) X
> » < > » »
/ = eval s’s’s’ss.s >
»; »; 4 >, >, ,

= Z eval []:] H Ay (u)

f

p p
In general, >< — Z Ay (u) jz
u
X P P

hl

AN
/ Y
In local models: X = E Ay(u) o x Wb
u X \\.//

h



Defining the currents

Choose an object @ € p ® p so that there is a vertex ¢— -

i.e. terminate a topological defect!

Current is non-local: need braiding for string to go over intervening edges.

Independent of path except for @ SN — Q_l -




For loops/Temperley-Lieb/Potts/Jones, loops are labeled with %, currents with 1.

V2

V2

The weight is zero unless the string connects two points on the same loop.

Q recall r
: =0 —ay X 6ab
N\

But don’t forget twist! s 1




Discrete “Holomorphicity”

* Smirnov defined non-local operators in a few lattice models that are discrete
“holomorphic”: they obey half the lattice Cauchy-Riemann equations.

 Examples are fermion operator in the Ising model (which obeys all the lattice C-R
equations), or parafermions in the 3-state Potts model. Cardy and collaborators
found many more in geometric lattice models.

* Cardy et al also had a different philosophy. They did not require a priori that the
Boltzmann weights satisfy the YBE. Requiring this conserved current exist then
gives a linear condition for the Boltzmann weights. Solving it gives turns out to
yield a solution of the full trilinear Yang-Baxter equation. Baxterization!

Discrete "holomorphicity’”” = vanishing lattice divergence



Conserved-current relation in a braided tensor category

All the data save iz and the amplitudes Ax(u) are specified by the category

N L
2T
'-—”
4 —
| -y +ll’l 5_,, -
u u u
Smirnov et al Cardy et al

u+u
A

In all known cases, the weights solving the linear equation also solve the YBE!



Solving the conserved-current relation

Yo, P
Plug X — Z A, (u) :{ into each of the terms
u
* p

o,

Then manipulate

to a common form:
a
¢‘/:I</ R R
acpRp
N



Solving the conserved-current relation

\
1|

Find all F symbols cancel with the simplifying assumptions made (no arrows, no
mutplicities), but analysis has been generalized (T. Osborne, unpublished).

( )

' forall a,x,® €
AX(U) _ equX 4+ Qa orall a,x,0 € pRp
Ag(u) Q4+ e, such that N7, # 0




Ay(u)  e™Q, +Q, forall @, X, ¢ €pRp
Aq (u) B Qx T eiuﬂa such that fo £ 0

This formula generalizes the quantum-group result of Zhang, Gould and Bracken
(using Jimbo’s work) to all braided tensor categories and any choice of ¢ .

No need for quantum-group representation theory!

A solution is not guaranteed.

Need to check that ratios are all consistent with fo =+ 0, and the €2,. Nevertheless,
many many solutions exist, sometimes even more than one for a given lattice model.

Smirnov; Riva and Cardy; Rajabpour and Cardy; Ikhlef and Cardy; lkhlef, Fendley and Cardy;
de Gier et al; Batchelor et al; Ikhlef and Weston; Chelkak, Glazman and Smirnov



Future directions

Would be nice to prove that such weights always give a solution of the YBE.
Would be nice to have a general criterion for when it works.

Most resulting models are critical (trigonmetric solutions of the YBE). Elliptic?
Relax some of the category constraints, e.g. finite number of simple objects.

For any fusion category, there exists a (more complicated) braided category
called the Drinfeld center. Makes plausible very new and different solutions of
the YBE, but none are known. Haagerup anyone?



