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Motivation

X Is N2>z SYM the only* integrable theory?

X What happens when we have less supersymmetry?

3k Can we do this in an organised way?



The past

3k Why do people believe that. V2 2 theories are not integrable?

[1006.0015 Gadde, EP, Rastelli]
3 They do not obey the usual YBE.

%k Does this kill integrability? No!

[Review 1912.00870 EP]



Integrable models

3 Rational (like XXX based on SU(2))
3 Trigonometric (like XXZ based on SU(2),)

3 Elliptic (like XYZ based on SU(2)q.)

3 There are also hyper-elliptic examples (chiral potts model)



Elliptic models

X Depending on the basis we use, elliptic models do not have

to obey the standard YBE but a modified, dynamical YBE.
[Felder 1994]

X In the “Baxter basis” (where the usual YBE is obeyed) there

IS no highest weight state.

3k SCFTs have BPS operators which correspond to the highest

weight states. They are naturally not in the “Baxter basis”.



[Drinfeld 1990]

Quasi-Hopf algebras

3 There is more than elliptic models and the dynamical YBE.

X Drinfeld twist: quasi-Hopf algebras, quasi-Hopf YBE.

3 When the Drinfeld twist obeys the so called shifted cocycle

condition, we get elliptic models and the dynamical YBE.



N2 92 SCFTs

3 Lagrangian . V2.2 SCFTs are classified. [Bhardwaj, Tachikawa 2013]

3 Most of them can be obtain via orbifolding . V> SYM and

then marginally deforming.

3 We know the gravity duals for marginally deformed

orbifolds.

3 At the orbifold point (no marginal def.) they are integrable.
[Beisert,Roiban 2005]

3 We only need to understand how to marginally deform.



Our main example
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Adjoint
3k Enough to discover all novel features (dynamical, elliptic ...).

3k When go — 0 gives V2.2 SCQCD in the Veneziano limit (N=2Nc).



The Plan of the talk

3K The spin chains of . 4~.2 SCFTs are dynamical.

%k V2 2 SCFTs enjoy a quasi-Hopf symmetry algebra.

3 The R-matrix in the quantum plane limit and the twist.
3 The SU(3) scalar sector as a dynamical 15-vertex model.

3 Explicit study using the coordinate Bethe ansatz.



Dynamical
spin chains



XY sector: an alternating spin chain

Every V27 SYM spin chain state ‘XYXYYX R >

Gives two . V2.2 spin chain states  |Q12Q21Q12Q21Q12Q21 - - - )

Dl XEQ DQ X ﬁl Dl XEQ |:|2 X El Dl XEQDQ X El

Which are Z» conjugate Q21Q12Q21Q12Q021Q12 - - )

Dg X il |:|1 XEQ |:|2 X ﬁl |:|1 xﬁng X ﬁl Dl Xiz

(k states for a rank k orbifold)

Note that if we specify the gauge group of the first color index we
identify which of the two states we have. This can be done by labelling

XYXYYX---)

1=1,2



The XY sector Hamiltonian
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XZ sector: dynamical spin chain

Every .27 SYM spin chain state |XZXZZX S >

Gives two . V2 2 spin chain states \Q12¢2Q21gb1¢1@12 ce )

[y x Ty Oy x Ty 0o x 010y x Ty 0y x 0y Uy x 0
Which are Z> conjugate ‘Q2D1¢1QD212¢2¢2Q21 >

(k states for a rank k orbifold)

We specify the gauge group of the first color index we identify which of
the two states we have. This can be done by labelling

XZXZZX ---) |



The XZ sector Hamiltonian
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Quasi-Hopf
symmetry



[Drinfeld 1990]

Quasi-Hopf symmetry

[Roiban2004][Berenstein,Cherkis2004] [Mansson,Zoubos2008][Dlamini,Zoubos2016&19]

3k As for marginal deformations of . ¥/~ SYM.

%k V2 2 SCFTs enjoy a quasi-Hopf symmetry algebra.

3k To discover it look at the F-terms.

3 They define a (complex 3D) quantum plane.

3 The R-matrix at the quantum plane limit (Braid limit)
A\z’z® = R® lmj

3 The superpotential is invariant under the quantum group.



Ex. the Manin guantum plane

q.CIZ'y p— yQE Can be obtain from an R-matrix:

g 0 0 0
b ab j 1|0 1 g—qg' O
0 O 0 q

The quantum plane is invariant under the transformations z'* = t*;2” .

They obey the algebra U,(sl(2)) which is obtained using the Rtt relations:
1 k a4 b 4k 41 ab
Rabtjtl =it R il
thht?) = ththy , thth —thth = (¢71 — @)tyt?

tht'y = ¢ tath , thth = ¢TIt th , thth = ¢ Hthth , t5t%, = ¢t



3D quantum planes classified

[Ewen,Ogievetsky1994]
Parameterise using two tensors Eix and Fijx:

Q] L Y —
Eix'e) =0 wu; by =0

Quantum plane Quantum co-plane - —Ejmnme

Eijkxiﬁﬁjxk =0 uinukFijk — 0
The R-matrix is given by: R L] — 5k53 EklmFij

Using this R-matrix we get back the right quantum plane relations
and through the Rtt relations we can write down the quantum algebra
(symmetries of the quantum plane)

Used successfully marginally deformed A2 SYM
[Mansson,Zoubos2008][Dlamini,Zoubos2016&19]



[Roiban2004] [Berenstein,Cherkis2004] [Mansson,Zoubos2008] [Dlamini,Zoubos2016&19]

Leigh-Strassler theory

P2 = gp? el — h((bS)Q Whr=4 = g'Tr {<I>1[<I>2, @3]} = %eijkTr {CIDiq)jCI)k}
B = q8°6* — h(9')? +
PPt = qot¢® — h(¢?)? Wis + Wi g = éTr (Eijp®' @' 0" + @,0;0, F7F)

3D Quanftum plane o
The quantum co-plane: hermitian conjugate: F%“* =F

17k
1
Fi23 = Ea31 = E312 = E 1 ”
g The Hamiltonian is obtained by: HJ* = F _ F%
_ _ _ mn
E301 = Eo13 = Fi32 = o
h : g i cj mij
= — = — - b P — _ j
Ei11 = Eap = E333 7 The R-matrix: R i = 5k51 Erin F
_ 7 14+qG—hh 0 0 0 0 —2h 0 2hq 0
2o Ltagthh % 27 0  1-qg+hh 0 0 0 0 2hg
2 0 0 2q 0 —2h 0 qG+hh—1 0 0
1 0 qG+hh—1 0 2q 0 0 0 0 —2h
R=— 0 0 2hq 0  1+gg—hh 0 —2h 0 0
2d 2hq 0 0 0 0 27 0 1—qq+hh 0
0 0 1—qg+hh 0 2hq 0 27 0 0
—2h 0 0 0 0 q@+hh—1 0 2q 0
0 —2h 0 2hq 0 0 0 0 14-q3—hh

The Lagrangian is invariant under the transformations ®' — t*, &’
which form a quantum version of SU(3) defined by the Rtt relations.



AdS point of view

Gravity dual reason why we have a quantum algebra:
NSNS B-field turned on the C? (transverse to the D3)
When there is a B-field the open strings on the D3

branes see a non-commutative geometry.
Open strings see a quantum plane!

[Seiberg,Witten1999]
[Schomerus1999]

3k For the Leigh-Strassler background [Kulaxizi 2006]

3k Marginally deformed orbifolds also have a B-field on the orbifolded C2cC?
(transverse to the D3) allowing us to go away from the orbifold point

2
1 | 1 ]_ gl - 6 3 -
_ 2L — 2 with 8 = B
g% | g% 2Tgs 9% 1+5 fSQ N5

[Gadde, EP, Rastelli 2009]



The Z2 quiver guantum group

There are two copies (images)
of the quantum plane:

L L = L[D2, d3)) = Le,  Tr { DI BF
91Q12Q21 = 1Q12Q21 , G2Q21Q12 = 92021 Q12 WN_4 gTr{ [ ! ]} 36«7k I‘{ }

P2Q21 = %quﬁ , P1Q12 = KQ1202 i

¢2@21=%@21¢1 , $1Q12 = KQ12¢ W — E(ll)cTr (X X]Xk) +E(2,2Tr (X X]Xk\
Y] Y] y,

(k images for a rank k orbifold)
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The Z> quiver guantum group

XY sector the R 1: the SU(2) that rotates X and Y is unbroken (indeed true)

XZ nontrivial R: the SU(2) that rotates X and Z is broken (upgraded to quantum)

(10 000 0 0 0\ /100000 0 0\
P —57100 0 0 0 0k K000 0 0
0= +1 2500 0 0 0 0-K k000 0 0 | ,
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_ 000008 a0
A quasi-Hopf symmetry algebra \0 00000 0 1)



The Z2 quiver has extra symmetry

The superpotential is invariant under a quantum SU(3)x symmetry,

with the appropriate co-product

The XZ SU(2) (as well as YZ SU(2)) inside the SU(3) are quantum.

We can do this both in an. 42 2 and in an .V2Z (dynamical) language.

We have the action of the generators of the SU(3)« on fields in both
languages as well as the co-product and we are currently working out

the action of the full supergroup PSU(2,2|4)«!

[2111.xxxxx Andriolo,Bertle, EP,Zhang,Zoubos]



Conjecture

Xk The V27 theories which can be obtained via orbifolding,
orientifolding, ... the mother A2 SYM theory, enjoy a
quantum deformation of PSU(2,2|4).

3k The naively broken generators of PSU(2,2|4) — SU(2,2|.4")
get upgraded to quantum generators.

... any susy breaking that is due to R-symmetry breaking.



A 15-Vertex

model for the
SU(3) sector




Vertex models

3 The 6-vertex model : XXZ (trigonometric)

3 The 8-vertex model : XYZ (elliptic)

3 How Baxter solved the 8-vertex model (XYZ): he did a local
change of basis and made the R-matrix of the 8-vertex to look like

the R-matrix of the 6-vertex model (locally).



Elliptic algebras

3 The vertex-type elliptic algebras: Baxter-Belavin R-matrix
obeys YBE.

X The face-type elliptic algebras: R-matrix of Andrews, Baxter,

Forrester. Felder showed that they obey a dynamical YBE (DYBE).

3 The two algebras are related by a twist. [g-alg/9712029Jimbo,Konno,Odake,Shiraishi]

3 The first does not have a highest weight state the second one does (this is why we

need the second one)!



Andrews Baxter Forrester

SOS models: statistical (square lattice) models defined by a set of Boltzmann face weights

d C
u —W (d - ) u: rapidity a, b, ¢, d: the heights

bu
a b @

Each model comes with a set of rules as to which heights are allowed to be adjacent.

a a+1 B a a-—1 ~ 01(2n —u) - Baxter’s R
. . W<a+1a+2u)_w<a—1a—2u)_ 01(2n) " axters Rxvz
AB_F modeil: nelght?ourlng W( a a+l )_W( a a—l‘ )_\/91(277(a—1)+w0)91(277(a+1)—|—w0) 6, (u)
heights can only differ by 1. a—1 a I")7 " \a+1 o ") 7 0, (2na + wo) 0:(21)
a a-+1 ~ 01(2na + wo + u) a a-—1 ~ 01(2na + wo — u)
(a—i—l a u)— 01(2na +wo) W(a—l a ‘u>— 61 (2na + wo)

Integrability is captured by the star-triangle relation:

2w (asle=w)w (3 ek w (gale) =S (2w (251w (5 k=)

[ e f



Felder’'s R-matrix
- (3) o (1)

after using the vertex-face map: a

(Wo 0 0)

C z ‘7
OOJﬁ+O
R(u; \) = d b = A
=05 <> ><
¢ k l

\0 0 0~/

oo YVOOFWHO=2) Oi(w) 5 L(A£u)  61(2n—u)
- 0:1(—) 0:(21) 0Ny T T e2n)
The R-matrix of Felder obeys a dynamical YBE (DYBE) n: Baxter’s Rxvz

Rio(up —ug; A+ 277h(3))R13(u1 — us; A\) Rag(ug — ug; A+ Znh(l))
= Ro3(ug — uz; \)Riz(ur — uz; A + 2nhP) Rig(uy — ug; \)

Important: the quasi-Hopf YBE becomes the DYBE when the twist satisfies a so-
called shifted cocycle relation.



Dyn aml iCaI YB E [1701.05562 Yagi

S A+2n 30 M)
i=2,3

A2nh® T
A2n SO A

\ -

A2n 37, )
i N'=X+2n 3 b0
>\+2/?7h(1) A+2n i:212h( ) \ 3 i=1,3

1 3 1 A2n S RO

i=1,2

N = X+ 2ph®

2 2
ng (u1 — U9; )\ + 277h(3))R13(u1 — U3; )\)RQ3(U2 — Us; )\ + 2?7h(1))
— Roz(ug — ug; \)Riz(u1 — us; A + 2nhP) Ry (ug — ug; \)

The R-matrix of Felder is a function of the dynamical parameter A which is shifted by 2n

when we cross an index line i J
— o
1 > R (u; N) =
A+ 2nh’
k [

Having the dynamical parameter to always be shifted by 2n is not good for our purpose!



Dilute RSOS/CSOS models

[Warnaar, Nienhuis, Seaton, Pearce...]

Having the dynamical parameter to always be shifted by 2n is not good for our purpose!
When we cross a Z (field in the adjoint representation) we don’t want to shift Al

The dynamical parameter A will keep track of the color group!

To achieve that we need to study dilute RSOS/CSOS models.

The name dilute comes from the link to loop models.

ABF is a dense or fully packed face model (neighbouring heights can differ by 1)

(1) - P -

We need to also have the dilute tiles:

Rl N

Boltzmann face weights can have neighbouring heights differing by 1 or being equal!

d d+x1 d d dd+1 d d d d ) (ddil ) <dd>
W 7W 7W
W<di1di1u>’w<ddilu> ’W(d d “) ’W<dj:1du)’ (dildilu dd+1l" ddl"



SU(3) sector as a 15-vertex model

Assume there is a vertex model, whose R-matrix R(u; /4;) = R(u; A)

i J
d iJ\) —
Produces the Hamiltonian H(k) @R(u; 1) lu=0 RY,(u; \) =\ ><
The R-matrix is a function of k() k l
Crossing a bifundamental field Q: k = 1/k "43()\ 277) — 1/’{()‘)

In the dynamical spin chain language this correspondsto A = A + 2n
The R matrix mustobey R(u; k) = R(u;\) <  R(u;r™ ) = R(u; A+ 2n)

Crossing two bifundamentals: kK = 1/K = K we return to the original coupling

constant (dynamical parameter A) thus the periodicity of the model is A+ 477 ~ A\

R(u; A\) = R(u; A £ 4n)

Crossing an adjoint Z field does not alter the gauge group and thus the dynamical

parameter A, thus the model is dilute. (A+2kn~A\ for a rank k orbifold)



SU(3) sector as a 15-vertex model

d+1 X xop X d—1 Y a2y Y dt1 X2 Y
d+1 X A+2n X d—1 Y A—2n Y d+1 X A+2n Y
d—1 Y yop X d—1 Y yop X d+1 X 12 Y
d@dA )\,d@dA A,d@dA A
d—1 Y )\—2’/] X d+1 X )\4‘27’] Y d—1 Y )\—277 X
d+1 X ayon Z d—1 Y \onZ Z \ X
d@d—l—l = X042y | d@dl = X2y, @dJrl = ;><L277
d+1 X )\+277 Z d—1 Y )\—27] Z Z A X
d Z Y d Z X d Z Y
d @dl = 2 X2, d @d—i—l = 2 X2y, d @dl = ,\><2n
X aan Z Y s\_on Z Z , Z



15-vertex models for. /22 SCFTs

Locally, this 15-vertex model capture the holomorphic SU(3) sector for any .42 2 SCFT.

Only difference between different . V2.2 SCFTs is the topology of the quiver and the “global

periodicity”: how the dynamical parameter A get’s shifted to capture the possibility for all

different color groups of the quiver diagram and when it comes back to itself.

For the Zo quiver \ &= 41 ~ \ For the Zs quiver A = 61 ~ A

The periodicity is captured by the adjacency graph.  [Jimbo,Miwa,Okado 1987]

A7 SYM ;A




Conjectures

Xk For every . N2 2 theory the holomorphic SU(3) sector can be

captured by a dynamical 15-vertex model which is specified
by the adjacency graph, which is the dual to the brane-tiling
diagram of the quiver theory.

3 Similarly, for a large class of . /27 theories the holomorphic

SU(3) sector will be captured by a dynamical 19-vertex
model which is specified by the adjacency graph, which is
the dual to the brane-tiling diagram of the quiver theory.

A genericﬂci theory can have vertices: XY — ZZ and conjugates
which an. V2 2 cannot due to R-symmetry!



Bethe Ansatz



Explicit Bethe Ansatz

In [1006.0015 Gadde, EP, Rastelli] we studied the XZ sector around the “phi-vacuum”.
The solution looked like two coupled trigonometric models, and the naive YBE

was not satisfied.

Two phivacua:  |0) = tr (¢¢) [0) =tr(¢)  One for each color group.

y
Q

o0
:

Magnons interpolate

2 <\ 2 . .2 (P
£) =257 +sgen ()
between the two vacua - - 9 E(p) (9-9) ggsin 2

%« -
O« ©-
- O«
S O«
@ -«

Two inequivalent two- "'¢¢¢C~2<5</3<5 00dQodg--- S=Sxxz(K)
magnon scatterings "'<5€5<5Q¢¢¢'“¢¢¢Q¢¢¢“- S = Sxxz(%)

__ 1—2keP14eiP1tP2)
Sxxz(K) = =175 s roitr1Tr2)

YBE not satisfied: S S S + SSS

Revisit the explicit 3-body BA in the light of quasi-Hopf [Bozkurt, EP, Zoubos]



Explicit Bethe Ansatz

Very different properties manifest when expand around an other vacuum,
the “Q-vacuum?.

Q) = tr (--QQQQAQQAQQQQ )

Even the one-magnon problem reveals novel features!

(1— k%) £ /(1 — k22 +4r2cos?p

WME;MWWM+;MWWM<TW§$‘ ey

The dispersion relation is elliptic!

1 1
Ei(p;k) =~ + Kk =E —\/(1 + K2)2 — 4K2sin’ p

aY KR
For two magnons we can find a solution on the center of mass frame
using conventional Bethe Ansatz techniques (usual permutations plus

nearest neighbour contact terms).



Explicit Bethe Ansatz

It is not possible to find a solution away from the center of mass
frame unless we use extra momenta to parameterise the solution.

K 1

k1o = 5 + g T 5 arccos (cos(pl —p2) +

Ey —2(k+1/k))%cos K
LRSI S

2sin? K

This is due to the elliptic form of the dispersion relation
Eo(p1,p2) = 2(k + 1/K) — /1 + &4 + 262 cos(2p1) — /1 + k% + 22 cos(2p1 )

the 2 magnon conservation of momentum and energy problem has 2 solutions.

Hinting to that the only correct rapidity is an elliptic one!

~ Vken(v/k)  O(u) ) (92(0))2

b O1(uw) TG T s
e’ = ivVksn(v/k) = i A 3\
(o/) = g

. K’
g=2¢e"", where 7 =1 (m)

Interesting eigenvalues under Z>. Much more to do ....




Conclusions

%k . N2 2 SCFTs enjoy a quantum SU(3)«x symmetry algebra.

X Map the SU(3) scalar sector to a dynamical 15-vertex model.

3 Explicit study with the coordinate Bethe ansatz.



Conclusions

Two Conjectures:

%k The . N<# theories which can be obtained via orbifolding,
orientifolding, ... the mother 427 SYM theory, enjoy a
quantum deformation of PSU(2,2|4).

%k For . N<# theories the holomorphic SU(3) sector can be

captured by a dynamical 15/19-vertex model which is
specified by the adjacency graph, which is the dual to the
brane-tiling diagram of the quiver theory.



Outlook

3 Write down the weights of the 15-vertex models
(map to the explicit BA solution) and check if they

obey the star-triangle relation. [EP, Zoubos]
3k Shifted cocycle condition important for integrability.

3 Introduce the rapidity via Baxterization or via the

adjoint action.



Outlook

3 Generalise (ellipticise) everything we have for . 427 SYM.
3 Very similar: . 427 SCFTs again starting with orbifolds (big class of theories).

3k Study the gravity dual of marginally deformed orbifolds!
X “4D Chern-Simons” approach [2005.03064 Costello,Stefanski]

3 Generalize [2104.08263 Gaberdiel. Gopakumar]
The String Dual to Free 422 SCFTs






