Dynamical spin chains in 4D $\mathcal{V}^{\mathcal{L}}=\mathcal{2}$ SCFTs

Elli Pomoni

London Integrability Journal Club

14 October 2021

Motivation

* Is $\mathcal{I}=4$ SYM the only* integrable theory?
* What happens when we have less supersymmetry?
* Can we do this in an organised way?

The past

* Why do people believe that $\mathfrak{N}=\mathcal{e}$ theories are not integrable?
[1006.0015 Gadde, EP, Rastelli]
* They do not obey the usual YBE.
* Does this kill integrability? No!

Integrable models

* Rational (like XXX based on SU(2))
* Trigonometric (like XXZ based on SU(2) $)$)
* Elliptic (like XYZ based on SU(2) q_{t} t)
* There are also hyper-elliptic examples (chiral potts model)

Elliptic models

* Depending on the basis we use, elliptic models do not have to obey the standard YBE but a modified, dynamical YBE.
[Felder 1994]
* In the "Baxter basis" (where the usual YBE is obeyed) there is no highest weight state.
* SCFTs have BPS operators which correspond to the highest weight states. They are naturally not in the "Baxter basis".

Quasi-Hopf algebras

* There is more than elliptic models and the dynamical YBE.
* Drinfeld twist: quasi-Hopf algebras, quasi-Hopf YBE.

$$
R_{12} \Phi_{312} R_{13} \Phi_{132}^{-1} R_{23} \Phi_{123}=\Phi_{321} R_{23} \Phi_{231}^{-1} R_{13} \Phi_{213} R_{12}
$$

* When the Drinfeld twist obeys the so called shifted cocycle condition, we get elliptic models and the dynamical YBE.

$\mathcal{N}=2$ SCFTs

* Lagrangian $\mathfrak{N}=\boldsymbol{\mathcal { L }}$ SCFTs are classified. [Bhardwaj,Tachikawa 2013]
* Most of them can be obtain via orbifolding $\mathcal{N}=4$ SYM and then marginally deforming.
* We know the gravity duals for marginally deformed orbifolds.
* At the orbifold point (no marginal def.) they are integrable.
[Beisert,Roiban 2005]
* We only need to understand how to marginally deform.

Our main example

The \mathbf{Z}_{2} quiver theory

Z_{2} orbifold $\mathscr{N}=4$ SYM and then marginally deform away from the orbifold point $\left(g_{1}=g_{2}\right)$

$$
X=\left(\begin{array}{cc}
& Q_{12} \\
Q_{21} &
\end{array}\right), \quad Y=\left(\begin{array}{cc}
& \tilde{Q}_{12} \\
\tilde{Q}_{21} &
\end{array}\right), \quad Z=\left(\begin{array}{cc}
\phi_{1} & \\
& \phi_{2}
\end{array}\right)
$$

* Enough to discover all novel features (dynamical, elliptic ...).
$*$ When $\mathrm{g}_{2} \longrightarrow 0$ gives $\boldsymbol{N}_{=2}$ SCQCD in the Veneziano limit $\left(\mathrm{N}_{\mathrm{f}}=2 \mathrm{~N}_{\mathrm{c}}\right)$.

The Plan of the talk

* The spin chains of $\mathscr{N}=\mathfrak{2}$ SCFTs are dynamical.
* $\mathcal{N}=\mathfrak{2}$ SCFTs enjoy a quasi-Hopf symmetry algebra.
* The R-matrix in the quantum plane limit and the twist.
* The SU(3) scalar sector as a dynamical 15 -vertex model.
* Explicit study using the coordinate Bethe ansatz.

Dynamical spin chains

XY sector: an alternating spin chain

Every $\mathfrak{N}=4$ SYM spin chain state $|X Y X Y Y X \cdots\rangle$

Gives two $\mathscr{N}=\mathcal{2}$ spin chain states $\left|Q_{12} \tilde{Q}_{21} Q_{12} \tilde{Q}_{21} \tilde{Q}_{12} Q_{21} \cdots\right\rangle$
$\square_{1} \times \bar{\square}_{2} \square_{2} \times \bar{\Pi}_{1} \square_{1} \times \bar{\square}_{2} \square_{2} \times \bar{\Pi}_{1} \square_{1} \times \bar{\square}_{2} \square_{2} \times \bar{\square}_{1}$
Which are Z_{2} conjugate

$$
\left|Q_{\square_{2} \times \bar{\square}_{1} \square_{1} \times \bar{\square}_{2} \square_{2} \times \bar{\square}_{1} \bar{\square}_{1} \times \bar{\square}_{2} \square_{2} \times \bar{\square}_{1} \square_{1} \times \bar{\square}_{2}} \tilde{Q}_{12} \tilde{Q}_{21} Q_{12} \cdots\right\rangle
$$

(k states for a rank k orbifold)

Note that if we specify the gauge group of the first color index we identify which of the two states we have. This can be done by labelling

$$
|X Y X Y Y X \cdots\rangle_{i=1,2}
$$

The XY sector Hamiltonian

$$
\begin{aligned}
\mathcal{H}_{1} & =\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \kappa^{-1} & -\kappa^{-1} & 0 \\
0 & -\kappa^{-1} & \kappa^{-1} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\mathcal{H}_{2} & =\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \kappa & -\kappa & 0 \\
0 & -\kappa & \kappa & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$H_{\ell, \ell+1}=\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \kappa^{-1} & -\kappa^{-1} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\kappa^{-1} & \kappa^{-1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \kappa & -\kappa & 0 \\ 0 & 0 & 0 & 0 & 0 & -\kappa & \kappa & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \quad\left(\begin{array}{l}Q_{12} Q_{21} \\ Q_{12} \tilde{Q}_{21} \\ \tilde{Q}_{12} Q_{21} \\ \tilde{Q}_{12} \tilde{Q}_{21} \\ Q_{21} Q_{12} \\ Q_{21} \tilde{Q}_{12} \\ \tilde{Q}_{21} Q_{12} \\ \tilde{Q}_{21} \tilde{Q}_{12}\end{array}\right)$
Two XXX Hamiltonians with different overall coefficients K and $1 / \kappa$

Dynamical XXX

XZ sector: dynamical spin chain

Every $\mathscr{N}=4$ SYM spin chain state $|X Z X Z Z X \cdots\rangle$
Gives two $\mathcal{N}=\mathbf{2}$ spin chain states $\left|Q_{12} \phi_{2} Q_{21} \phi_{1} \phi_{1} Q_{12} \cdots\right\rangle$

$$
\square_{1} \times \bar{\square}_{2} \square_{2} \times \bar{\square}_{2} \square_{2} \times \bar{\square}_{1} \square_{1} \times \bar{\square}_{1} \square_{1} \times \bar{\square}_{1} \square_{1} \times \bar{\square}_{2}
$$

Which are Z_{2} conjugate
(k states for a rank k orbifold)

We specify the gauge group of the first color index we identify which of the two states we have. This can be done by labelling

$$
|X Z X Z Z X \cdots\rangle_{i=1,2}
$$

The XZ sector Hamiltonian

$$
\begin{align*}
\mathcal{H}_{1} & =\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \kappa & -1 & 0 \\
0 & -1 & \kappa^{-1} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \tag{array}\\
\mathcal{H}_{2} & =\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \kappa^{-1} & -1 & 0 \\
0 & -1 & \kappa & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{align*}
$$

$H_{i, i+1}=\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \kappa & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & \kappa^{-1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \kappa^{-1} & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & \kappa & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Two Temperley-Lieb Hamiltonians with two different deformation parameters K and $1 / \kappa$
$\kappa=\frac{g_{2}}{g_{1}}$
Dynamical Temperley-Lieb

Quasi-Hopf symmetry

Quasi-Hopf symmetry

[Roiban2004][Berenstein,Cherkis2004][Månsson,Zoubos2008][Dlamini,Zoubos2016\&19]

* As for marginal deformations of $\mathscr{N}=\mathbf{4}$ SYM.
* $\mathfrak{N}=\mathfrak{2}$ SCFTs enjoy a quasi-Hopf symmetry algebra.
* To discover it look at the F-terms.
* They define a (complex 3D) quantum plane.
* The R -matrix at the quantum plane limit (Braid limit)

$$
\lambda x^{b} x^{a}=R_{j l}^{a b} x^{j} x^{l}
$$

* The superpotential is invariant under the quantum group.

Ex. the Manin quantum plane

$q x y=y x \quad$ Can be obtain from an R-matrix:

$$
\lambda x^{b} x^{a}=R_{j l}^{a b} x^{j} x^{l} \quad R=q^{-\frac{1}{2}}\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & q-q^{-1} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

The quantum plane is invariant under the transformations $x^{\prime i}=\mathrm{t}^{i}{ }_{j} x^{j}$. They obey the algebra $U_{q}(s l(2))$ which is obtained using the Rtt relations:

$$
R_{a b}^{i k} t_{j}^{a} t_{l}^{b}=t_{b}^{k} t_{a}^{i} R_{j l}^{a b}
$$

$\mathrm{t}_{2}^{1} \mathrm{t}^{2}{ }_{1}=\mathrm{t}^{2}{ }_{1} \mathrm{t}^{1}{ }_{2}, \mathrm{t}^{1}{ }_{1} \mathrm{t}^{2}{ }_{2}-\mathrm{t}^{2}{ }_{2} \mathrm{t}^{1}{ }_{1}=\left(q^{-1}-q\right) \mathrm{t}^{1} \mathrm{t}^{2}{ }_{1}$
$\mathrm{t}^{1}{ }_{1} \mathrm{t}_{2}^{1}=q^{-1} \mathrm{t}^{1}{ }_{2} \mathrm{t}^{1}{ }_{1}, \mathrm{t}^{1}{ }_{1} \mathrm{t}^{2}{ }_{1}=q^{-1} \mathrm{t}^{2}{ }_{1} \mathrm{t}^{1}{ }_{1}, \mathrm{t}^{1}{ }_{2} \mathrm{t}^{2}{ }_{2}=q^{-1} \mathrm{t}^{2}{ }_{2} \mathrm{t}^{1}{ }_{2}, \mathrm{t}^{2} \mathrm{t}^{2}{ }_{2}=q^{-1} \mathrm{t}^{2} \mathrm{t}^{2}{ }_{1}$

3D quantum planes classified

[Ewen,Ogievetsky1994]
Parameterise using two tensors $\mathrm{E}_{\mathrm{ijk}}$ and $\mathrm{F}_{\mathrm{ijk}}$:

$$
E_{i j}^{\alpha} x^{i} x^{j}=0 \quad u_{i} u_{j} F_{\alpha}^{i j}=0
$$

Quantum plane
Quantum co-plane

$$
\delta_{j}^{i}=\frac{1}{2} E_{j m n} F^{m n i}
$$

$$
E_{i j k} x^{i} x^{j} x^{k}=0 \quad u_{i} u_{j} u_{k} F^{i j k}=0
$$

The R-matrix is given by: $\quad \hat{R}_{k l}^{i j}=\delta_{k}^{i} \delta_{l}^{j}-E_{k l m} F^{m i j}$
Using this R-matrix we get back the right quantum plane relations and through the Rtt relations we can write down the quantum algebra (symmetries of the quantum plane)
Used successfully marginally deformed $\mathcal{N}=4$ SYM
[Roiban2004] [Berenstein,Cherkis2004] [Månsson,Zoubos2008] [Dlamini,Zoubos2016\&19]

Leigh-Strassler theory

$$
\begin{aligned}
\phi^{1} \phi^{2} & =q \phi^{2} \phi^{1}-h\left(\phi^{3}\right)^{2} \\
\phi^{2} \phi^{3} & =q \phi^{3} \phi^{2}-h\left(\phi^{1}\right)^{2} \\
\phi^{3} \phi^{1} & =q \phi^{1} \phi^{3}-h\left(\phi^{2}\right)^{2}
\end{aligned}
$$

3D Quantum plane

$$
\begin{aligned}
& \mathcal{W}_{\mathcal{N}=4}=g \operatorname{Tr}\left\{\Phi^{1}\left[\Phi^{2}, \Phi^{3}\right]\right\}=\frac{g}{3} \epsilon_{i j k} \operatorname{Tr}\left\{\Phi^{i} \Phi^{j} \Phi^{k}\right\} \\
& \mathcal{W}_{L S}+\mathcal{W}_{L S}^{\dagger}=\frac{1}{3} \operatorname{Tr}\left(E_{i j k} \Phi^{i} \Phi^{j} \Phi^{k}+\bar{\Phi}_{i} \bar{\Phi}_{j} \bar{\Phi}_{k} F^{i j k}\right)
\end{aligned}
$$

The quantum co-plane: hermitian conjugate: $F^{i j k}=\bar{E}_{i j k}$
$E_{123}=E_{231}=E_{312}=\frac{1}{d}$,
$E_{321}=E_{213}=E_{132}=-\frac{q}{d}$,
$E_{111}=E_{222}=E_{333}=\frac{h}{d}$,
The Hamiltonian is obtained by: $H_{m n}^{j k}=E_{m n a} F^{a j k}$

$$
\text { The R-matrix: } \quad \hat{R}_{k l}^{i j}=\delta_{k}^{i} \delta_{l}^{j}-E_{k l m} F^{m i j}
$$

$$
d^{2}=\frac{1+\bar{q} q+\overline{\bar{h}} h}{2}
$$

The Lagrangian is invariant under the transformations $\Phi^{i} \rightarrow \mathrm{t}^{i}{ }_{j} \Phi^{j}$ which form a quantum version of $\mathrm{SU}(3)$ defined by the Rtt relations.

$$
\begin{aligned}
& \left.\begin{array}{ccc}
0 & 2 \bar{q} q & 0 \\
0 & 2 h \bar{q} \\
9 \bar{q}+h \bar{h}-1 & 0 & 2 \\
-2 \bar{h} & 0 & -2 h \\
-2 \bar{h} & 0 \\
2 \bar{q} & 1-q \bar{q}+h \bar{h} & 0 \\
0 & 0 \\
0 & 2 q & 0 \\
0 & 0 & 1+q \bar{q}-h \bar{h}
\end{array}\right)
\end{aligned}
$$

AdS point of view

Gravity dual reason why we have a quantum algebra:
NSNS B-field turned on the C ${ }^{3}$ (transverse to the D3)
When there is a B-field the open strings on the D3 branes see a non-commutative geometry. Open strings see a quantum plane!
[Seiberg,Witten1999]
[Schomerus1999]

* For the Leigh-Strassler background [Kulaxizi 2006]
* Marginally deformed orbifolds also have a B-field on the orbifolded $\mathrm{C}^{2} \subset \mathrm{C}^{3}$ (transverse to the D3) allowing us to go away from the orbifold point

$$
\frac{1}{g_{1}^{2}}+\frac{1}{g_{2}^{2}}=\frac{1}{2 \pi g_{s}} \quad \frac{g_{1}^{2}}{g_{2}^{2}}=\frac{\beta}{1+\beta} \text { with } \beta=\int_{S^{2}} B_{N S}
$$

[Gadde, EP, Rastelli 2009]

The Z_{2} quiver quantum group

There are two copies (images) of the quantum plane:

$$
\begin{array}{rlrl}
g_{1} Q_{12} \widetilde{Q}_{21} & =g_{1} \widetilde{Q}_{12} Q_{21}, & g_{2} Q_{21} \widetilde{Q}_{12}=g_{2} \widetilde{Q}_{21} Q_{12} \\
\phi_{2} Q_{21} & =\frac{1}{\kappa} Q_{21} \phi_{1}, & \phi_{1} Q_{12}=\kappa Q_{12} \phi_{2} \\
\phi_{2} \widetilde{Q}_{21} & =\frac{1}{\kappa} \widetilde{Q}_{21} \phi_{1}, & & \phi_{1} \widetilde{Q}_{12}=\kappa \widetilde{Q}_{12} \phi_{2}
\end{array}
$$

(k images for a rank k orbifold)

$$
\hat{R}_{k l}^{i j}=\delta_{k}^{i} \delta_{l}^{j}-E_{k l m} F^{m i j}
$$

XY sector the R is proportional to the identity

The Z_{2} quiver quantum group

XY sector the $\mathrm{R} \propto 1$: the $\mathrm{SU}(2)$ that rotates X and Y is unbroken (indeed true)
XZ nontrivial R : the $\mathrm{SU}(2)$ that rotates X and Z is broken (upgraded to quantum)

$$
R=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{2 \kappa}{\kappa^{2}+1} & -\frac{\kappa^{2}-1}{\kappa^{2}+1} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{\kappa^{2}-1}{\kappa^{2}+1} & \frac{2}{\kappa^{2}+1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{2 \kappa}{\kappa^{2}+1} & \frac{\kappa^{2}-1}{\kappa^{2}+1} & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{\kappa^{2}-1}{\kappa^{2}+1} & \frac{2 \kappa}{\kappa^{2}+1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & k & k^{\prime} & 0 & 0 & 0 & 0 & 0 \\
0 & -k^{\prime} & k & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & k & -k^{\prime} & 0 \\
0 & 0 & 0 & 0 & 0 & k^{\prime} & k & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The Rtt relations define the quantum group $S U(2)_{\kappa}$

For the XZ sector there is a twist:

$$
R=F_{21} F_{12}^{-1}=\left(F_{12}\right)^{-2}
$$

A quasi-Hopf symmetry algebra

$$
F=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \alpha & \beta & 0 & 0 & 0 & 0 & 0 \\
0 & -\beta & \alpha & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \alpha & -\beta & 0 \\
0 & 0 & 0 & 0 & 0 & \beta & \alpha & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \quad \text { with: } \quad \alpha=\frac{\kappa+1}{\sqrt{2} \sqrt{1+\kappa^{2}}}
$$

The Z_{2} quiver has extra symmetry

The superpotential is invariant under a quantum $\operatorname{SU}(3)_{\kappa}$ symmetry, with the appropriate co-product

$$
\Delta R_{b}^{a}=\mathbb{K}_{a b} \otimes R_{b}^{a}+R_{b}^{a} \otimes \mathbb{K}_{b a}
$$

The XZ SU(2) (as well as YZ SU(2)) inside the $\operatorname{SU}(3)$ are quantum.
We can do this both in an $\mathscr{N}=\mathfrak{2}$ and in an $\mathscr{N}=\boldsymbol{4}$ (dynamical) language.

We have the action of the generators of the $\operatorname{SU}(3)_{k}$ on fields in both languages as well as the co-product and we are currently working out the action of the full supergroup $\operatorname{PSU}(2,2 \mid 4)_{\mathrm{k}}$!

Conjecture

* The $\mathscr{N} 4$ theories which can be obtained via orbifolding, orientifolding, ... the mother $\mathfrak{N}=4$ SYM theory, enjoy a quantum deformation of $\operatorname{PSU}(2,2 \mid 4)$.
* The naively broken generators of $\operatorname{PSU}(2,2 \mid 4) \rightarrow \operatorname{SU}(2,2 \mid \mathscr{N})$ get upgraded to quantum generators.
... any susy breaking that is due to R-symmetry breaking.

A 15-Vertex model for the SU(3) sector

Vertex models

* The 6-vertex model : XXZ (trigonometric)
* The 8-vertex model : XYZ (elliptic)
* How Baxter solved the 8-vertex model (XYZ): he did a local change of basis and made the R-matrix of the 8-vertex to look like the R-matrix of the 6-vertex model (locally).

Elliptic algebras

* The vertex-type elliptic algebras: Baxter-Belavin R-matrix obeys YBE.
* The face-type elliptic algebras: R-matrix of Andrews, Baxter, Forrester. Felder showed that they obey a dynamical YBE (DYBE).
* The two algebras are related by a twist. [q-alg/9712029Jimbo,Konno,Odake,Shiraishi]
* The first does not have a highest weight state the second one does (this is why we need the second one)!

Andrews Baxter Forrester

SOS models: statistical (square lattice) models defined by a set of Boltzmann face weights

$$
{ }_{a}^{d} \square_{b}^{c}=W\left(\left.\begin{array}{ll}
d & c \\
a & b
\end{array} \right\rvert\, u\right) \quad \text { u: rapidity } \quad \text { a, } b, \mathrm{c}, \mathrm{~d} \text { : the heights }
$$

Each model comes with a set of rules as to which heights are allowed to be adjacent.

ABF model: neighbouring heights can only differ by 1.

$$
\begin{aligned}
W\left(\left.\begin{array}{cc}
a & a+1 \\
a+1 & a+2
\end{array} \right\rvert\, u\right) & =W\left(\left.\begin{array}{cc}
a & a-1 \\
a-1 & a-2
\end{array} \right\rvert\, u\right)=\frac{\theta_{1}(2 \eta-u)}{\theta_{1}(2 \eta)} \quad \eta \text { : Baxter's RXYZ } \\
W\left(\left.\begin{array}{cc}
a & a+1 \\
a-1 & a
\end{array} \right\rvert\, u\right) & =W\left(\left.\begin{array}{cc}
a & a-1 \\
a+1 & a
\end{array} \right\rvert\, u\right)=\frac{\sqrt{\theta_{1}\left(2 \eta(a-1)+w_{0}\right) \theta_{1}\left(2 \eta(a+1)+w_{0}\right)}}{\theta_{1}\left(2 \eta a+w_{0}\right)} \frac{\theta_{1}(u)}{\theta_{1}(2 \eta)} \\
W\left(\left.\begin{array}{cc}
a & a+1 \\
a+1 & a
\end{array} \right\rvert\, u\right) & =\frac{\theta_{1}\left(2 \eta a+w_{0}+u\right)}{\theta_{1}\left(2 \eta a+w_{0}\right)}, \quad W\left(\left.\begin{array}{cc}
a & a-1 \\
a-1 & a
\end{array} \right\rvert\, u\right)=\frac{\theta_{1}\left(2 \eta a+w_{0}-u\right)}{\theta_{1}\left(2 \eta a+w_{0}\right)}
\end{aligned}
$$

Integrability is captured by the star-triangle relation:

$$
\left.\sum_{g} W\left(\left.\begin{array}{ll}
f & g \\
a & b
\end{array} \right\rvert\, z-w\right) W\left(\left.\begin{array}{ll}
g & d \\
b & c
\end{array} \right\rvert\, z\right) W\left(\left.\begin{array}{ll}
f & e \\
g & d
\end{array} \right\rvert\, w\right)=\sum_{g} W\left(\left.\begin{array}{ll}
a & g \\
b & c
\end{array} \right\rvert\, w\right) W\left(\left.\begin{array}{ll}
f & e \\
a & g
\end{array} \right\rvert\, z\right) W\left(\begin{array}{ll}
e & d \\
g & c
\end{array}\right) w-w\right)
$$

Felder's R-matrix

$$
e[1]=\binom{1}{0}, e[-1]=\binom{0}{1}
$$

Felder's R-matrix $=$ ABF R-matrix after using the vertex-face map:

$$
R(u ;-2 \eta d) e[c-d] \otimes e[b-c]=\sum_{a} W\left(\left.\begin{array}{ll}
d & c \\
a & b
\end{array} \right\rvert\, u\right) e[b-a] \otimes e[a-d]
$$

$$
\begin{aligned}
& R(u ; \lambda)=\left(\begin{array}{cccc}
\gamma & 0 & 0 & 0 \\
0 & \alpha & \beta_{+} & 0 \\
0 & \beta_{-} & \alpha & 0 \\
0 & 0 & 0 & \gamma
\end{array}\right) \\
& \alpha=\frac{\sqrt{\theta_{1}(\lambda+2 \eta) \theta_{1}(\lambda-2 \eta)}}{\theta_{1}(-\lambda)} \frac{\theta_{1}(u)}{\theta_{1}(2 \eta)} \\
& \beta_{ \pm}=\frac{\theta_{1}(\lambda \pm u)}{\theta_{1}(\lambda)} \quad \gamma=\frac{\theta_{1}(2 \eta-u)}{\theta_{1}(2 \eta)}
\end{aligned}
$$

The R-matrix of Felder obeys a dynamical YBE (DYBE)
η : Baxter's Rxyz

$$
\begin{aligned}
R_{12}\left(u_{1}-u_{2} ; \lambda+2 \eta h^{(3)}\right) & R_{13}\left(u_{1}-u_{3} ; \lambda\right) R_{23}\left(u_{2}-u_{3} ; \lambda+2 \eta h^{(1)}\right) \\
= & R_{23}\left(u_{2}-u_{3} ; \lambda\right) R_{13}\left(u_{1}-u_{3} ; \lambda+2 \eta h^{(2)}\right) R_{12}\left(u_{1}-u_{2} ; \lambda\right)
\end{aligned}
$$

Important: the quasi-Hopf YBE becomes the DYBE when the twist satisfies a socalled shifted cocycle relation.

Dynamical YBE

$$
\lambda^{\prime}=\lambda+2 \eta h^{(2)}
$$

$$
\begin{aligned}
& R_{12}\left(u_{1}-u_{2} ; \lambda+2 \eta h^{(3)}\right. R_{13}\left(u_{1}-u_{3} ; \lambda\right) \\
& \underline{23}\left(u_{2}-u_{3} ; \lambda+2 \eta h^{(1)}\right) \\
&=R_{23}\left(u_{2}-u_{3} ; \lambda\right) \\
& R_{13}\left(u_{1}-u_{3} ; \lambda+2 \eta h^{(2)}\right) R_{12}\left(u_{1}-u_{2} ; \lambda\right)
\end{aligned}
$$

The R-matrix of Felder is a function of the dynamical parameter λ which is shifted by 2η when we cross an index line

$$
\lambda+2 \eta h^{i}
$$

Having the dynamical parameter to always be shifted by 2η is not good for our purpose!

Dilute RSOS/CSOS models

[Warnaar, Nienhuis, Seaton, Pearce...]
Having the dynamical parameter to always be shifted by 2η is not good for our purpose!
When we cross a Z (field in the adjoint representation) we don't want to shift λ !
The dynamical parameter λ will keep track of the color group!
To achieve that we need to study dilute RSOS/CSOS models.
The name dilute comes from the link to loop models.
ABF is a dense or fully packed face model (neighbouring heights can differ by 1)

We need to also have the dilute tiles:

Boltzmann face weights can have neighbouring heights differing by 1 or being equal!
$W\left(\left.\begin{array}{cc}d & d \pm 1 \\ d \pm 1 & d \pm 1\end{array} \right\rvert\, u\right), W\left(\left.\begin{array}{cc}d & d \\ d & d \pm 1\end{array} \right\rvert\, u\right), W\left(\left.\begin{array}{cc}d & d \pm 1 \\ d & d\end{array} \right\rvert\, u\right), W\left(\left.\begin{array}{cc}d & d \\ d \pm 1 & d\end{array} \right\rvert\, u\right), W\left(\left.\begin{array}{cc}d & d \\ d \pm 1 & d \pm 1\end{array} \right\rvert\, u\right), W\left(\left.\begin{array}{ll}d & d \pm 1 \\ d & d \pm 1\end{array} \right\rvert\, u\right), W\left(\left.\begin{array}{ll}d & d \\ d & d\end{array} \right\rvert\, u\right)$

SU(3) sector as a 15-vertex model

Assume there is a vertex model, whose R-matrix $R(u ; \kappa) \equiv R(u ; \lambda)$
Produces the Hamiltonian $\left.\mathcal{H}(\kappa) \propto \frac{d}{d u} R(u ; \kappa)\right|_{u=0}$
$R_{k l}^{i j}(u ; \lambda)=\lambda$
The R-matrix is a function of $\kappa(\lambda)$
Crossing a bifundamental field $Q: \kappa \rightarrow 1 / \kappa$

$$
\kappa(\lambda \pm 2 \eta)=1 / \kappa(\lambda)
$$

In the dynamical spin chain language this corresponds to $\lambda \rightarrow \lambda \pm 2 \eta$
The R matrix must obey $R(u ; \kappa) \equiv R(u ; \lambda) \quad \Leftrightarrow \quad R\left(u ; \kappa^{-1}\right) \equiv R(u ; \lambda \pm 2 \eta)$
Crossing two bifundamentals: $\mathrm{k} \rightarrow 1 / \mathrm{k} \rightarrow \mathrm{k}$ we return to the original coupling constant (dynamical parameter λ) thus the periodicity of the model is $\lambda \pm 4 \eta \sim \lambda$

$$
R(u ; \lambda)=R(u ; \lambda \pm 4 \eta)
$$

Crossing an adjoint Z field does not alter the gauge group and thus the dynamical parameter $\boldsymbol{\lambda}$, thus the model is dilute.
$(\lambda \pm 2 k \eta \sim \lambda$ for a rank k orbifold $)$

SU(3) sector as a 15-vertex model

15-vertex models for $\mathscr{I}=\mathfrak{2}$ SCFTs

Locally, this 15 -vertex model capture the holomorphic $\operatorname{SU}(3)$ sector for any $\mathcal{N}=\mathfrak{2}$ SCFT.
Only difference between different $\mathcal{N}=\mathcal{2}$ SCFTs is the topology of the quiver and the "global periodicity": how the dynamical parameter $\boldsymbol{\lambda}$ get's shifted to capture the possibility for all different color groups of the quiver diagram and when it comes back to itself.

For the Z_{2} quiver $\lambda \pm 4 \eta \sim \lambda$ For the Z_{3} quiver $\lambda \pm 6 \eta \sim \lambda$
The periodicity is captured by the adjacency graph. [Jimbo,Miwa,Okado 1987]

Conjectures

* For every $\mathcal{N}=\mathcal{2}$ theory the holomorphic $\operatorname{SU}(3)$ sector can be captured by a dynamical 15-vertex model which is specified by the adjacency graph, which is the dual to the brane-tiling diagram of the quiver theory.
* Similarly, for a large class of $\mathscr{N}=\boldsymbol{1}$ theories the holomorphic SU(3) sector will be captured by a dynamical 19-vertex model which is specified by the adjacency graph, which is the dual to the brane-tiling diagram of the quiver theory.

A generic $\mathscr{N}=\boldsymbol{1}$ theory can have vertices: $\mathrm{XY} \rightarrow \mathrm{ZZ}$ and conjugates
which an $\mathscr{N}=\mathcal{L}$ cannot due to R -symmetry!

Bethe Ansatz

Explicit Bethe Ansatz

In [1006.0015 Gadde, EP, Rastelli] we studied the XZ sector around the "phi-vacuum".
The solution looked like two coupled trigonometric models, and the naive YBE was not satisfied.

Two phi vacua: $\quad|0\rangle \equiv \operatorname{tr}\left(\phi^{\ell}\right) \quad|\check{0}\rangle \equiv \operatorname{tr}\left(\breve{\phi}^{\ell}\right) \quad$ One for each color group.

Magnons interpolate $\quad \cdots \phi \phi \phi Q \check{\phi} \check{\phi} \check{\phi} \cdots$ between the two vacua $\cdots \check{\phi} \check{\phi} \check{\phi} \tilde{Q} \phi \phi \phi \cdots$

$$
g^{2} E(p)=2(g-\check{g})^{2}+8 g \check{g} \sin ^{2}\left(\frac{p}{2}\right)
$$

Two inequivalent two- $\cdots \phi \phi \phi Q \check{\phi} \check{\phi} \check{\phi} \cdots \check{\phi} \check{\phi} \check{\phi} \tilde{Q} \phi \phi \phi \cdots \quad S=S_{X X Z}(\kappa)$ magnon scatterings $\quad \cdots \check{\phi} \check{\phi} \check{\phi} \tilde{Q} \phi \phi \phi \cdots \phi \phi \phi Q \check{\phi} \check{\phi} \check{\phi} \cdots \quad \tilde{S}=S_{X X Z}\left(\frac{1}{\kappa}\right)$

$$
S_{X X Z}(\kappa)=-\frac{1-2 \kappa e^{i p_{1}}+e^{i\left(p_{1}+p_{2}\right)}}{1-2 \kappa e^{i p_{2}}+e^{i\left(p_{1}+p_{2}\right)}}
$$

YBE not satisfied: $\quad S \tilde{S} S \neq \tilde{S} S \tilde{S}$

Revisit the explicit 3-body BA in the light of quasi-Hopf [Bozkurt, EP, Zoubos]

Explicit Bethe Ansatz

Very different properties manifest when expand around an other vacuum, the "Q-vacuum".

$$
|Q\rangle \equiv \operatorname{tr}(\cdots Q \tilde{Q} Q \tilde{Q} Q \tilde{Q} Q \tilde{Q} Q \tilde{Q} \cdots)
$$

Even the one-magnon problem reveals novel features!

$$
|\phi(p)\rangle \equiv \sum_{\ell} A(p) e^{i p \ell}\left|\phi_{\ell}\right\rangle+\sum_{\ell} B(p) e^{i p \ell}\left|\check{\phi}_{\ell}\right\rangle . \quad r(p) \equiv \frac{B(p)}{A(p)}=\frac{\left(1-\kappa^{2}\right) \pm \sqrt{\left(1-\kappa^{2}\right)^{2}+4 \kappa^{2} \cos ^{2} p}}{2 \kappa \cos p}
$$

The dispersion relation is elliptic!

$$
E_{1}(p ; \kappa)=\frac{1}{\kappa}+\kappa \pm \frac{1}{\kappa} \sqrt{\left(1+\kappa^{2}\right)^{2}-4 \kappa^{2} \sin ^{2} p}
$$

For two magnons we can find a solution on the center of mass frame using conventional Bethe Ansatz techniques (usual permutations plus nearest neighbour contact terms).

Explicit Bethe Ansatz

It is not possible to find a solution away from the center of mass frame unless we use extra momenta to parameterise the solution.

$$
k_{1,2}=\frac{K}{2} \pm \frac{\pi}{2} \mp \frac{1}{2} \arccos \left(\cos \left(p_{1}-p_{2}\right)+\frac{\left(E_{2}-2(\kappa+1 / \kappa)\right)^{2} \cos K}{2 \sin ^{2} K}\right) \quad K=p_{1}+p_{2}
$$

This is due to the elliptic form of the dispersion relation

$$
E_{2}\left(p_{1}, p_{2}\right)=2(\kappa+1 / \kappa)-\sqrt{1+\kappa^{4}+2 \kappa^{2} \cos \left(2 p_{1}\right)}-\sqrt{1+\kappa^{4}+2 \kappa^{2} \cos \left(2 p_{1}\right)}
$$

the 2 magnon conservation of momentum and energy problem has 2 solutions.
Hinting to that the only correct rapidity is an elliptic one!

$$
\begin{array}{r}
e^{i p}=i \sqrt{k} \operatorname{sn}(v / \kappa)=i \frac{\theta_{1}(u)}{\theta_{4}(u)} \left\lvert\, r(u)=\frac{\sqrt{k} \operatorname{cn}(v / \kappa)}{\operatorname{dn}(v / \kappa)}=\frac{\theta_{2}(u)}{\theta_{3}(u)} \quad \kappa^{2}=\left(\frac{\theta_{2}(0)}{\theta_{3}(0)}\right)^{2}\right. \\
q=e^{i \pi \tau}, \text { where } \tau=i \frac{K^{\prime}(m)}{K(m)}
\end{array}
$$

Interesting eigenvalues under Z_{2}. Much more to do

Conclusions

* $\mathscr{N}=\mathcal{L}$ SCFTs enjoy a quantum $\operatorname{SU}(3)_{\mathrm{k}}$ symmetry algebra.
* Map the $\mathrm{SU}(3)$ scalar sector to a dynamical 15-vertex model.
* Explicit study with the coordinate Bethe ansatz.

Conclusions

Two Conjectures:

* The $\mathcal{N} 4$ theories which can be obtained via orbifolding, orientifolding,.. the mother $\mathfrak{N}=4$ SYM theory, enjoy a quantum deformation of $\operatorname{PSU}(2,2 \mid 4)$.
* For $\mathcal{N} 4$ theories the holomorphic $\operatorname{SU}(3)$ sector can be captured by a dynamical 15/19-vertex model which is specified by the adjacency graph, which is the dual to the brane-tiling diagram of the quiver theory.

Outlook

* Write down the weights of the 15 -vertex models
(map to the explicit BA solution) and check if they
obey the star-triangle relation.
[EP, Zoubos]
* Shifted cocycle condition important for integrability.
* Introduce the rapidity via Baxterization or via the adjoint action.

Outlook

* Generalise (ellipticise) everything we have for $\boldsymbol{N}=4$ SYM.
* Very similar: $\mathcal{N}=\boldsymbol{1}$ SCFTs again starting with orbifolds (big class of theories).
* Study the gravity dual of marginally deformed orbifolds!
* "4D Chern-Simons" approach [2005.03064 Costello,Stefański]
* Generalize [2104.08263 Gaberdiel_Gopakumar]

The String Dual to Free $\mathcal{N}=\mathfrak{e}$ SCFTs

Thanks!

