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Motivation

  Is N=4 SYM the only* integrable theory?


 What happens when we have less supersymmetry?


 Can we do this in an organised way?



 Why do people believe that N=2 theories are not integrable?


 They do not obey the usual YBE.


 Does this kill integrability? No!

The past
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Integrable models 

  Rational (like XXX based on SU(2))


 Trigonometric (like XXZ based on SU(2)q)


 Elliptic (like XYZ based on SU(2)q,t) 

 There are also hyper-elliptic examples (chiral potts model)



Elliptic models
  Depending on the basis we use, elliptic models do not have 

to obey the standard YBE but a modified, dynamical YBE.

  In the “Baxter basis” (where the usual YBE is obeyed) there 

is no highest weight state.

 SCFTs have BPS operators which correspond to the highest 
weight states. They are naturally not in the “Baxter basis”.

[Felder 1994]



Quasi-Hopf algebras

  Drinfeld twist: quasi-Hopf algebras, quasi-Hopf YBE.

  When the Drinfeld twist obeys the so called shifted cocycle 

condition, we get elliptic models and the dynamical YBE.

 There is more than elliptic models and the dynamical YBE.

[Drinfeld 1990]



N=2 SCFTs
 Lagrangian N=2 SCFTs are classified. 


 Most of them can be obtain via orbifolding N=4 SYM and 

then marginally deforming.


 We know the gravity duals for marginally deformed 
orbifolds.


 At the orbifold point (no marginal def.) they are integrable.


 We only need to understand how to marginally deform.

[Bhardwaj,Tachikawa 2013]

[Beisert,Roiban 2005]



 Z2  orbifold N=4 SYM and then marginally deform away from the 

orbifold point (g1=g2) 

Our main example
 The Z2 quiver theory 1 2
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Figure 1. The Z2 quiver. The color groups are denoted by blobs representing the field content of
the N = 1 vector multiplets inside the N = 2 vector multiplets. We use N = 1 language for the
hypermultiplets. The arrow to the right is QÎ while the arrow to the left is Q̃Î .

To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N ⇥ 2N color matrices
in the mother N = 4 theory, which, in N = 1 language, contains three chiral superfields
X,Y, Z in the adjoint of the SU(2N) gauge group. The action of the Z2 is chosen such as to
preserve N = 2 supersymmetry, which means that it only acts on a |||C

2 of the |||C
3 transverse

space spanned by the three complex scalar fields. The orbifold procedure projects out some
N ⇥N blocks of these fields [32], so that after the projection they look like

X =

 
Q12

Q21

!
, Y =

 
Q̃12

Q̃21

!
, Z =

 
�1

�2

!
. (2.1)

where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows

QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =

⇣
Q̃21 , Q21

⌘T
. (2.2)

The superpotential is explicitly invariant under the extra SU(2)L rotating the doublets of
SU(2)L in (2.2) and can be written as

WZ2 = ig1 tr2
⇣
Q̃Î�1QÎ

⌘
� ig2 tr1

⇣
QÎ�2Q̃

Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.
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QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =
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 Enough to discover all novel features (dynamical, elliptic …). 

 When g2        0  gives N=2 SCQCD in the Veneziano limit (Nf=2Nc).

Bifundamental Adjoint

Adjoint



The Plan of the talk
 The spin chains of N=2 SCFTs are dynamical.


 N=2 SCFTs enjoy a quasi-Hopf symmetry algebra.


 The R-matrix in the quantum plane limit and the twist.


 The SU(3) scalar sector as a dynamical 15-vertex model.


 Explicit study using the coordinate Bethe ansatz.



Dynamical  
spin chains



XY sector: an alternating spin chain

Every N=4 SYM spin chain state
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where the indices `, ` + 1 denote the nearest neighbour sites of the spin chain. Note that
the basis is 8-dimensional instead of 16-dimensional as one would expect given our four
fields. The remaining combinations of fields cannot occur, as they are not allowed by the
gauge structure (for e.g. a Q12 cannot be followed by a Q12 or Q̃12). We have chosen this
truncated basis such that the upper left block of the Hamiltonian corresponds to the first
gauge group to the left of the first site where the Hamiltonian acts. In other words, the
upper left block acts on two bifundamental squarks which are contracted or in the singlet
representation of the second gauge group and have their indices open which means that they
are in the bifundamental representation of the first color group (⇤1 ⇥ ⇤1). On the other
hand, the lower right block of the Hamiltonian acts on two squarks which have open color
indices from the second gauge group (⇤2⇥⇤2) and are color contracted with respect to the
first color group. We emphasise that, although the Hamiltonian looks block-diagonal, this
is an artifact of the notation. The same fields appear in both blocks, and thus the upper
and lower blocks of the Hamiltonian will mix when acting on a spin chain configuration.

For this and other reasons to become clear later, we will prefer to work in the mother
N = 4 picture, where we only deal with the 2N⇥2N fields X,Y instead of their component
fields. A spin chain state such as |XYXY Y X · · · i in the N = 4 picture can be decomposed
into two states, in this case

���Q12Q̃21Q12Q̃21Q̃12Q21 · · · i and
���Q21Q̃12Q21Q̃12Q̃21Q12 · · · i in

the N = 2 picture. These states can of course be mapped to each other by exchanging the
gauge groups. In the XY picture, which of the two chains we are considering is uniquely
defined by specifying the gauge group to the left of a given site of the chain (meaning the
first index of the bifundamental field at that site). Without loss of generality we can take
this reference site to be the first site of the chain.

Similarly, the above action of the Hamiltonian is decomposed into an action of two
Hamiltonians in the XY basis. Whether we are on the upper or lower block again de-
pends on which gauge group is to the left of the first site we are acting on. We call these
Hamiltonians H1 and H2, with

H1 =

0
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Gives two N=2 spin chain states

(k states for a rank k orbifold)

Which are Z2 conjugate
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Figure 3. The vertices contributing to the Hamiltonian in the XZ sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
already performed the Wick contractions of the conjugate fields with the second gauge invariant
operator to write the vertices directly as spin chain interactions.

some combinations of fields (e.g. �1�2) cannot occur due to the gauge index structure.
The Hamiltonian (2.10) can of course also be reproduced from the more general scalar
Hamiltonian in [7].

We will again prefer to look at the Hamiltonian for the N = 4 X and Z fields rather
than their N = 2 component fields. So for instance a state like |XXZXZZ · · · i will corre-
spond to two states |Q12Q21�1Q12�2�2 · · · i and its Z2 conjugate |Q21Q12�2Q21�1�1 · · · i

depending on the gauge group at a given reference site. To act with the Hamiltonian on
the X,Z basis, we again need to specify whether the gauge group is 1 or 2 to the left of the
first site where the Hamiltonian acts. The major difference from the XY sector is that the
gauge group does not change on crossing a Z field. We write:
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where the notation is that Hi acts on the basis in the gauge group representation ⇤i ⇥⇤j

where j is not correlated to i as above and can take both 1,2 values. More explicitly,
H1 is the Hamiltonian acting on two sites where the gauge group to the left of the first
site is the first one, while H2 acts when the gauge group to the left is the second one.
Unlike the XY sector, where each Hamiltonian was of Heisenberg type, in the XZ sector
the Hamiltonians are of Temperley-Lieb type. This immediately brings to mind the XXZ
model whose quantum-group invariant Hamiltonian (obtained by adding an appropriate
boundary term to the open chain) is of Temperley-Lieb type. However, unlike the XXZ
case, this Hamiltonian changes dynamically along the chain, since H1 is exchanged with
H2 (and vice versa) every time one crosses an X field. We will see in section 6 that Z

excitations around the vacuum formed by the X fields behave very similarly to those of
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Note that if we specify the gauge group of the first color index we 
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To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
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where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows
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The superpotential is explicitly invariant under the extra SU(2)L rotating the doublets of
SU(2)L in (2.2) and can be written as

WZ2 = ig1 tr2
⇣
Q̃Î�1QÎ
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remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.
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Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.

– 6 –

1 2

Q12

Q21

eQ21

eQ12�1 �2

Figure 1. The Z2 quiver. The color groups are denoted by blobs representing the field content of
the N = 1 vector multiplets inside the N = 2 vector multiplets. We use N = 1 language for the
hypermultiplets. The arrow to the right is QÎ while the arrow to the left is Q̃Î .
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This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction
of the arrows. For instance, Q12 transforms in the fundamental of gauge group 1 and the
antifundamental of gauge group 2 (⇤1 ⇥⇤2). (⇤2 ⇥⇤1).

We already wish to indicate that we have the choice of working in the daughter N = 2

SCFT picture (with our single letter basis composed of the six fields �i and Qij , Q̃ij) or in
the mother N = 4 SYM picture where the single site basis is made out of X,Y, Z . We
will mostly use the latter as it allows us to simplify the discussion. As we will see, the
information of whether we are working with the upper or lower component of a given field
in the N = 4 picture will be provided by a dynamical parameter �.

2.2 The Hamiltonian

In this paper we will focus on the one-loop holomorphic SU(3) sector of the Z2 quiver. In
the mother N = 4 SYM this sector is made up of three complex scalar fields X,Y, Z in
the adjoint of the SU(2N) gauge group. The planar Hamiltonian of this theory has been
derived, for the full scalar sector, in [7]. We begin by visually rederiving the Hamiltonian
in two SU(2)-like sectors, the one formed by the fields X and Y and the one formed by X

and Z, so that we can highlight the difference between these sectors.

The XY sector
This is the sector which includes all the (holomorphic) bifundamental fields. To derive

the Hamiltonian, let us start by considering the �i F-terms:

F�1 = ig1(Q12
eQ21 �

eQ12Q21) , F�2 = ig2(Q21
eQ12 �

eQ21Q12) (2.5)

From the potential FF̄ , following the treatment in e.g. [43], we can immediately draw the
vertices contributing to the one-loop Hamiltonian. These are shown in Figure 2.
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Figure 2. The vertices contributing to the Hamiltonian in the XY sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
already performed the Wick contractions of the conjugate fields with the second gauge invariant
operator to write the vertices directly as spin chain interactions.
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To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N ⇥ 2N color matrices
in the mother N = 4 theory, which, in N = 1 language, contains three chiral superfields
X,Y, Z in the adjoint of the SU(2N) gauge group. The action of the Z2 is chosen such as to
preserve N = 2 supersymmetry, which means that it only acts on a |||C

2 of the |||C
3 transverse

space spanned by the three complex scalar fields. The orbifold procedure projects out some
N ⇥N blocks of these fields [32], so that after the projection they look like

X =

 
Q12

Q21

!
, Y =

 
Q̃12

Q̃21

!
, Z =

 
�1

�2

!
. (2.1)

where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows

QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =

⇣
Q̃21 , Q21

⌘T
. (2.2)

The superpotential is explicitly invariant under the extra SU(2)L rotating the doublets of
SU(2)L in (2.2) and can be written as

WZ2 = ig1 tr2
⇣
Q̃Î�1QÎ

⌘
� ig2 tr1

⇣
QÎ�2Q̃

Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.
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Q̃Î�1QÎ
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in the N = 4 picture will be provided by a dynamical parameter �.
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where the indices `, ` + 1 denote the nearest neighbour sites of the spin chain. Note that
the basis is 8-dimensional instead of 16-dimensional as one would expect given our four
fields. The remaining combinations of fields cannot occur, as they are not allowed by the
gauge structure (for e.g. a Q12 cannot be followed by a Q12 or Q̃12). We have chosen this
truncated basis such that the upper left block of the Hamiltonian corresponds to the first
gauge group to the left of the first site where the Hamiltonian acts. In other words, the
upper left block acts on two bifundamental squarks which are contracted or in the singlet
representation of the second gauge group and have their indices open which means that they
are in the bifundamental representation of the first color group (⇤1 ⇥ ⇤1). On the other
hand, the lower right block of the Hamiltonian acts on two squarks which have open color
indices from the second gauge group (⇤2⇥⇤2) and are color contracted with respect to the
first color group. We emphasise that, although the Hamiltonian looks block-diagonal, this
is an artifact of the notation. The same fields appear in both blocks, and thus the upper
and lower blocks of the Hamiltonian will mix when acting on a spin chain configuration.

For this and other reasons to become clear later, we will prefer to work in the mother
N = 4 picture, where we only deal with the 2N⇥2N fields X,Y instead of their component
fields. A spin chain state such as |XYXY Y X · · · i in the N = 4 picture can be decomposed
into two states, in this case

���Q12Q̃21Q12Q̃21Q̃12Q21 · · · i and
���Q21Q̃12Q21Q̃12Q̃21Q12 · · · i in

the N = 2 picture. These states can of course be mapped to each other by exchanging the
gauge groups. In the XY picture, which of the two chains we are considering is uniquely
defined by specifying the gauge group to the left of a given site of the chain (meaning the
first index of the bifundamental field at that site). Without loss of generality we can take
this reference site to be the first site of the chain.

Similarly, the above action of the Hamiltonian is decomposed into an action of two
Hamiltonians in the XY basis. Whether we are on the upper or lower block again de-
pends on which gauge group is to the left of the first site we are acting on. We call these
Hamiltonians H1 and H2, with
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We introduce and study tetrahedron instantons, which can be realized in string theory

by D1-branes probing a configuration of intersecting D7-branes in flat spacetime with a

nonzero constant background B-field. Physically they capture instantons on C3 in the

presence of the most general intersecting codimention-two supersymmetric defects. More-

over, we construct the tetrahedron instantons as particular solutions of general instanton

equations in noncommutative field theory. We analyze the moduli space of tetrahedron

instantons and discuss the geometric interpretations. We compute the instanton partition

function both via the equivariant localization on the moduli space of tetrahedron instan-

tons and via the elliptic genus of the worldvolume theory on the D1-branes probing the

intersecting D7-branes, obtaining the same result. The instanton partition function of the

tetrahedron instantons lies between the higher-rank Donaldson-Thomas invariants on C3

and the partition function of the magnificent four model, which is conjectured to be the

mother of all instanton partition functions. Finally, we show that the instanton partition

function admits a free field representation.
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XZ sector: dynamical spin chain
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Figure 3. The vertices contributing to the Hamiltonian in the XZ sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
already performed the Wick contractions of the conjugate fields with the second gauge invariant
operator to write the vertices directly as spin chain interactions.

some combinations of fields (e.g. �1�2) cannot occur due to the gauge index structure.
The Hamiltonian (2.10) can of course also be reproduced from the more general scalar
Hamiltonian in [7].

We will again prefer to look at the Hamiltonian for the N = 4 X and Z fields rather
than their N = 2 component fields. So for instance a state like |XXZXZZ · · · i will corre-
spond to two states |Q12Q21�1Q12�2�2 · · · i and its Z2 conjugate |Q21Q12�2Q21�1�1 · · · i

depending on the gauge group at a given reference site. To act with the Hamiltonian on
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H1 =

0

BBB@

0 0 0 0

0  �1 0

0 �1 �1
0

0 0 0 0

1

CCCA
, H2 =

0

BBB@

0 0 0 0

0 �1
�1 0

0 �1  0

0 0 0 0

1

CCCA
, in the basis

0

BBB@

XX

XZ

ZX

ZZ

1

CCCA

i=1,2

, (2.11)

where the notation is that Hi acts on the basis in the gauge group representation ⇤i ⇥⇤j

where j is not correlated to i as above and can take both 1,2 values. More explicitly,
H1 is the Hamiltonian acting on two sites where the gauge group to the left of the first
site is the first one, while H2 acts when the gauge group to the left is the second one.
Unlike the XY sector, where each Hamiltonian was of Heisenberg type, in the XZ sector
the Hamiltonians are of Temperley-Lieb type. This immediately brings to mind the XXZ
model whose quantum-group invariant Hamiltonian (obtained by adding an appropriate
boundary term to the open chain) is of Temperley-Lieb type. However, unlike the XXZ
case, this Hamiltonian changes dynamically along the chain, since H1 is exchanged with
H2 (and vice versa) every time one crosses an X field. We will see in section 6 that Z

excitations around the vacuum formed by the X fields behave very similarly to those of
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Figure 1. The Z2 quiver. The color groups are denoted by blobs representing the field content of
the N = 1 vector multiplets inside the N = 2 vector multiplets. We use N = 1 language for the
hypermultiplets. The arrow to the right is QÎ while the arrow to the left is Q̃Î .

To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N ⇥ 2N color matrices
in the mother N = 4 theory, which, in N = 1 language, contains three chiral superfields
X,Y, Z in the adjoint of the SU(2N) gauge group. The action of the Z2 is chosen such as to
preserve N = 2 supersymmetry, which means that it only acts on a |||C

2 of the |||C
3 transverse

space spanned by the three complex scalar fields. The orbifold procedure projects out some
N ⇥N blocks of these fields [32], so that after the projection they look like

X =

 
Q12

Q21

!
, Y =

 
Q̃12

Q̃21

!
, Z =

 
�1

�2

!
. (2.1)

where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows

QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =

⇣
Q̃21 , Q21

⌘T
. (2.2)

The superpotential is explicitly invariant under the extra SU(2)L rotating the doublets of
SU(2)L in (2.2) and can be written as

WZ2 = ig1 tr2
⇣
Q̃Î�1QÎ

⌘
� ig2 tr1

⇣
QÎ�2Q̃

Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.
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where the notation is that H1 acts on the basis labelled by i = 1 in the representation
⇤1 ⇥ ⇤1 of the color group, while H2 acts on the basis with i = 2 in the representation
⇤2 ⇥ ⇤2. In other words, by H1 we denote the Hamiltonian which is applicable when
the gauge group to the left of a site ` along the chain is the first one, while H2 is the
corresponding Hamiltonian when the gauge group to the left of a site ` is the second one.
Both Hamiltonians are of XXX type but with a different (ferromagnetic) coupling given by
�1 and , respectively.

Given that the XY sector is only made up of bifundamentals, which means that the
gauge group alternates at consecutive sites (regardless of whether the field at that site is
an X or a Y ), we conclude that the Hamiltonian of this sector is alternately H1 and H2.
If, for instance, we fix the gauge group to the left of the first site to be the first one, we will
have H1 acting on odd-even sites and H2 acting on even-odd sites.

We conclude that the XY sector of the interpolating theory is governed by an alter-
nating XXX-model Hamiltonian. In section 5 we will study this alternating spin chain in
more detail using the coordinate Bethe ansatz.

For the sake of the interested reader, in order to obtain the Hamiltonian in (2.7) from
[7], we can start with the form of the Hamiltonian given at the top of page 16 of [7]. Firstly,
we note that K = KSU(2)R and is zero on our sector as we look only at the upper components
(IJ = ++) of the SU(2)R triplet QQ̃ or Q̃Q. Then the only contributions that are left in
our sector are

H1|QQ̃i = 2K̂|QQ̃i , H2|Q̃Qi = 22K̂|Q̃Qi (2.8)

where K̂ = KSU(2)L . Rescaling the Hamiltonian by an overall 2 and choosing the basis
(2.6) we get (2.7).

XZ sector
In this sector we will consider operators composed of the bifundamental field X and

the adjoint field Z. To find the Hamiltonian we will need the Q̃ij F-terms:

FQ̃12
= i(g2�2Q21 � g1Q21�1) , FQ̃21

= i(g1�1Q12 � g2Q12�2) (2.9)

These lead to the interactions shown in Figure 3.
We will again divide by an overall factor of g1g2, resulting in the Hamiltonian:

Hi,i+1 =

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0  �1 0 0 0 0 0

0 �1 �1
0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 �1
�1 0

0 0 0 0 0 �1  0

0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, in the basis

0

BBBBBBBBBBBB@

Q12Q21

Q12�2

�1Q12

�1�1

Q21Q12

Q21�1

�2Q21

�2�2

1

CCCCCCCCCCCCA

. (2.10)

As before, the upper left block contains the interactions with the first gauge group on
the left, while the lower right block the opposite. The state space is again truncated as
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where the notation is that H1 acts on the basis labelled by i = 1 in the representation
⇤1 ⇥ ⇤1 of the color group, while H2 acts on the basis with i = 2 in the representation
⇤2 ⇥ ⇤2. In other words, by H1 we denote the Hamiltonian which is applicable when
the gauge group to the left of a site ` along the chain is the first one, while H2 is the
corresponding Hamiltonian when the gauge group to the left of a site ` is the second one.
Both Hamiltonians are of XXX type but with a different (ferromagnetic) coupling given by
�1 and , respectively.

Given that the XY sector is only made up of bifundamentals, which means that the
gauge group alternates at consecutive sites (regardless of whether the field at that site is
an X or a Y ), we conclude that the Hamiltonian of this sector is alternately H1 and H2.
If, for instance, we fix the gauge group to the left of the first site to be the first one, we will
have H1 acting on odd-even sites and H2 acting on even-odd sites.

We conclude that the XY sector of the interpolating theory is governed by an alter-
nating XXX-model Hamiltonian. In section 5 we will study this alternating spin chain in
more detail using the coordinate Bethe ansatz.

For the sake of the interested reader, in order to obtain the Hamiltonian in (2.7) from
[7], we can start with the form of the Hamiltonian given at the top of page 16 of [7]. Firstly,
we note that K = KSU(2)R and is zero on our sector as we look only at the upper components
(IJ = ++) of the SU(2)R triplet QQ̃ or Q̃Q. Then the only contributions that are left in
our sector are

H1|QQ̃i = 2K̂|QQ̃i , H2|Q̃Qi = 22K̂|Q̃Qi (2.8)

where K̂ = KSU(2)L . Rescaling the Hamiltonian by an overall 2 and choosing the basis
(2.6) we get (2.7).

XZ sector
In this sector we will consider operators composed of the bifundamental field X and

the adjoint field Z. To find the Hamiltonian we will need the Q̃ij F-terms:

FQ̃12
= i(g2�2Q21 � g1Q21�1) , FQ̃21

= i(g1�1Q12 � g2Q12�2) (2.9)

These lead to the interactions shown in Figure 3.
We will again divide by an overall factor of g1g2, resulting in the Hamiltonian:

Hi,i+1 =

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0  �1 0 0 0 0 0

0 �1 �1
0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 �1
�1 0

0 0 0 0 0 �1  0

0 0 0 0 0 0 0 0

1
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, in the basis

0

BBBBBBBBBBBB@

Q12Q21

Q12�2

�1Q12

�1�1

Q21Q12

Q21�1

�2Q21

�2�2

1

CCCCCCCCCCCCA

. (2.10)

As before, the upper left block contains the interactions with the first gauge group on
the left, while the lower right block the opposite. The state space is again truncated as
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This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction
of the arrows. For instance, Q12 transforms in the fundamental of gauge group 1 and the
antifundamental of gauge group 2 (⇤1 ⇥⇤2). (⇤2 ⇥⇤1).

We already wish to indicate that we have the choice of working in the daughter N = 2

SCFT picture (with our single letter basis composed of the six fields �i and Qij , Q̃ij) or in
the mother N = 4 SYM picture where the single site basis is made out of X,Y, Z . We
will mostly use the latter as it allows us to simplify the discussion. As we will see, the
information of whether we are working with the upper or lower component of a given field
in the N = 4 picture will be provided by a dynamical parameter �.

2.2 The Hamiltonian

In this paper we will focus on the one-loop holomorphic SU(3) sector of the Z2 quiver. In
the mother N = 4 SYM this sector is made up of three complex scalar fields X,Y, Z in
the adjoint of the SU(2N) gauge group. The planar Hamiltonian of this theory has been
derived, for the full scalar sector, in [7]. We begin by visually rederiving the Hamiltonian
in two SU(2)-like sectors, the one formed by the fields X and Y and the one formed by X

and Z, so that we can highlight the difference between these sectors.

The XY sector
This is the sector which includes all the (holomorphic) bifundamental fields. To derive

the Hamiltonian, let us start by considering the �i F-terms:

F�1 = ig1(Q12
eQ21 �

eQ12Q21) , F�2 = ig2(Q21
eQ12 �

eQ21Q12) (2.5)

From the potential FF̄ , following the treatment in e.g. [43], we can immediately draw the
vertices contributing to the one-loop Hamiltonian. These are shown in Figure 2.

Q12 eQ21

Q12 eQ21

g21

Q12 eQ21

eQ12 Q21

�g21

eQ21 Q12

eQ21 Q12

g22

eQ21 Q12

Q21 eQ12

�g22

eQ12 Q21

eQ12 Q21

g21

eQ12 Q21

Q12 eQ21

�g21

Q21 eQ12

Q21 eQ12

g22

Q21 eQ12

eQ21 Q12

�g22
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where the notation is that H1 acts on the basis labelled by i = 1 in the representation
⇤1 ⇥ ⇤1 of the color group, while H2 acts on the basis with i = 2 in the representation
⇤2 ⇥ ⇤2. In other words, by H1 we denote the Hamiltonian which is applicable when
the gauge group to the left of a site ` along the chain is the first one, while H2 is the
corresponding Hamiltonian when the gauge group to the left of a site ` is the second one.
Both Hamiltonians are of XXX type but with a different (ferromagnetic) coupling given by
�1 and , respectively.

Given that the XY sector is only made up of bifundamentals, which means that the
gauge group alternates at consecutive sites (regardless of whether the field at that site is
an X or a Y ), we conclude that the Hamiltonian of this sector is alternately H1 and H2.
If, for instance, we fix the gauge group to the left of the first site to be the first one, we will
have H1 acting on odd-even sites and H2 acting on even-odd sites.

We conclude that the XY sector of the interpolating theory is governed by an alter-
nating XXX-model Hamiltonian. In section 5 we will study this alternating spin chain in
more detail using the coordinate Bethe ansatz.

For the sake of the interested reader, in order to obtain the Hamiltonian in (2.7) from
[7], we can start with the form of the Hamiltonian given at the top of page 16 of [7]. Firstly,
we note that K = KSU(2)R and is zero on our sector as we look only at the upper components
(IJ = ++) of the SU(2)R triplet QQ̃ or Q̃Q. Then the only contributions that are left in
our sector are

H1|QQ̃i = 2K̂|QQ̃i , H2|Q̃Qi = 22K̂|Q̃Qi (2.8)

where K̂ = KSU(2)L . Rescaling the Hamiltonian by an overall 2 and choosing the basis
(2.6) we get (2.7).

XZ sector
In this sector we will consider operators composed of the bifundamental field X and

the adjoint field Z. To find the Hamiltonian we will need the Q̃ij F-terms:

FQ̃12
= i(g2�2Q21 � g1Q21�1) , FQ̃21

= i(g1�1Q12 � g2Q12�2) (2.9)

These lead to the interactions shown in Figure 3.
We will again divide by an overall factor of g1g2, resulting in the Hamiltonian:
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As before, the upper left block contains the interactions with the first gauge group on
the left, while the lower right block the opposite. The state space is again truncated as
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Figure 1. The Z2 quiver. The color groups are denoted by blobs representing the field content of
the N = 1 vector multiplets inside the N = 2 vector multiplets. We use N = 1 language for the
hypermultiplets. The arrow to the right is QÎ while the arrow to the left is Q̃Î .

To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N ⇥ 2N color matrices
in the mother N = 4 theory, which, in N = 1 language, contains three chiral superfields
X,Y, Z in the adjoint of the SU(2N) gauge group. The action of the Z2 is chosen such as to
preserve N = 2 supersymmetry, which means that it only acts on a |||C

2 of the |||C
3 transverse

space spanned by the three complex scalar fields. The orbifold procedure projects out some
N ⇥N blocks of these fields [32], so that after the projection they look like

X =

 
Q12

Q21

!
, Y =

 
Q̃12

Q̃21

!
, Z =

 
�1

�2

!
. (2.1)

where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows

QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =

⇣
Q̃21 , Q21

⌘T
. (2.2)

The superpotential is explicitly invariant under the extra SU(2)L rotating the doublets of
SU(2)L in (2.2) and can be written as

WZ2 = ig1 tr2
⇣
Q̃Î�1QÎ

⌘
� ig2 tr1

⇣
QÎ�2Q̃

Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.
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This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction
of the arrows. For instance, Q12 transforms in the fundamental of gauge group 1 and the
antifundamental of gauge group 2 (⇤1 ⇥⇤2). (⇤2 ⇥⇤1).

We already wish to indicate that we have the choice of working in the daughter N = 2

SCFT picture (with our single letter basis composed of the six fields �i and Qij , Q̃ij) or in
the mother N = 4 SYM picture where the single site basis is made out of X,Y, Z . We
will mostly use the latter as it allows us to simplify the discussion. As we will see, the
information of whether we are working with the upper or lower component of a given field
in the N = 4 picture will be provided by a dynamical parameter �.

2.2 The Hamiltonian

In this paper we will focus on the one-loop holomorphic SU(3) sector of the Z2 quiver. In
the mother N = 4 SYM this sector is made up of three complex scalar fields X,Y, Z in
the adjoint of the SU(2N) gauge group. The planar Hamiltonian of this theory has been
derived, for the full scalar sector, in [7]. We begin by visually rederiving the Hamiltonian
in two SU(2)-like sectors, the one formed by the fields X and Y and the one formed by X

and Z, so that we can highlight the difference between these sectors.

The XY sector
This is the sector which includes all the (holomorphic) bifundamental fields. To derive

the Hamiltonian, let us start by considering the �i F-terms:

F�1 = ig1(Q12
eQ21 �

eQ12Q21) , F�2 = ig2(Q21
eQ12 �

eQ21Q12) (2.5)

From the potential FF̄ , following the treatment in e.g. [43], we can immediately draw the
vertices contributing to the one-loop Hamiltonian. These are shown in Figure 2.
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Figure 2. The vertices contributing to the Hamiltonian in the XY sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
already performed the Wick contractions of the conjugate fields with the second gauge invariant
operator to write the vertices directly as spin chain interactions.
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Figure 3. The vertices contributing to the Hamiltonian in the XZ sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
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operator to write the vertices directly as spin chain interactions.

some combinations of fields (e.g. �1�2) cannot occur due to the gauge index structure.
The Hamiltonian (2.10) can of course also be reproduced from the more general scalar
Hamiltonian in [7].

We will again prefer to look at the Hamiltonian for the N = 4 X and Z fields rather
than their N = 2 component fields. So for instance a state like |XXZXZZ · · · i will corre-
spond to two states |Q12Q21�1Q12�2�2 · · · i and its Z2 conjugate |Q21Q12�2Q21�1�1 · · · i

depending on the gauge group at a given reference site. To act with the Hamiltonian on
the X,Z basis, we again need to specify whether the gauge group is 1 or 2 to the left of the
first site where the Hamiltonian acts. The major difference from the XY sector is that the
gauge group does not change on crossing a Z field. We write:

H1 =

0

BBB@

0 0 0 0

0  �1 0

0 �1 �1
0

0 0 0 0

1

CCCA
, H2 =

0

BBB@

0 0 0 0

0 �1
�1 0

0 �1  0

0 0 0 0

1

CCCA
, in the basis

0
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XZ
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ZZ

1

CCCA

i=1,2

, (2.11)

where the notation is that Hi acts on the basis in the gauge group representation ⇤i ⇥⇤j

where j is not correlated to i as above and can take both 1,2 values. More explicitly,
H1 is the Hamiltonian acting on two sites where the gauge group to the left of the first
site is the first one, while H2 acts when the gauge group to the left is the second one.
Unlike the XY sector, where each Hamiltonian was of Heisenberg type, in the XZ sector
the Hamiltonians are of Temperley-Lieb type. This immediately brings to mind the XXZ
model whose quantum-group invariant Hamiltonian (obtained by adding an appropriate
boundary term to the open chain) is of Temperley-Lieb type. However, unlike the XXZ
case, this Hamiltonian changes dynamically along the chain, since H1 is exchanged with
H2 (and vice versa) every time one crosses an X field. We will see in section 6 that Z

excitations around the vacuum formed by the X fields behave very similarly to those of
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where the notation is that Hi acts on the basis in the gauge group representation ⇤i ⇥⇤j

where j is not correlated to i as above and can take both 1,2 values. More explicitly,
H1 is the Hamiltonian acting on two sites where the gauge group to the left of the first
site is the first one, while H2 acts when the gauge group to the left is the second one.
Unlike the XY sector, where each Hamiltonian was of Heisenberg type, in the XZ sector
the Hamiltonians are of Temperley-Lieb type. This immediately brings to mind the XXZ
model whose quantum-group invariant Hamiltonian (obtained by adding an appropriate
boundary term to the open chain) is of Temperley-Lieb type. However, unlike the XXZ
case, this Hamiltonian changes dynamically along the chain, since H1 is exchanged with
H2 (and vice versa) every time one crosses an X field. We will see in section 6 that Z

excitations around the vacuum formed by the X fields behave very similarly to those of
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where the notation is that H1 acts on the basis labelled by i = 1 in the representation
⇤1 ⇥ ⇤1 of the color group, while H2 acts on the basis with i = 2 in the representation
⇤2 ⇥ ⇤2. In other words, by H1 we denote the Hamiltonian which is applicable when
the gauge group to the left of a site ` along the chain is the first one, while H2 is the
corresponding Hamiltonian when the gauge group to the left of a site ` is the second one.
Both Hamiltonians are of XXX type but with a different (ferromagnetic) coupling given by
�1 and , respectively.

Given that the XY sector is only made up of bifundamentals, which means that the
gauge group alternates at consecutive sites (regardless of whether the field at that site is
an X or a Y ), we conclude that the Hamiltonian of this sector is alternately H1 and H2.
If, for instance, we fix the gauge group to the left of the first site to be the first one, we will
have H1 acting on odd-even sites and H2 acting on even-odd sites.

We conclude that the XY sector of the interpolating theory is governed by an alter-
nating XXX-model Hamiltonian. In section 5 we will study this alternating spin chain in
more detail using the coordinate Bethe ansatz.

For the sake of the interested reader, in order to obtain the Hamiltonian in (2.7) from
[7], we can start with the form of the Hamiltonian given at the top of page 16 of [7]. Firstly,
we note that K = KSU(2)R and is zero on our sector as we look only at the upper components
(IJ = ++) of the SU(2)R triplet QQ̃ or Q̃Q. Then the only contributions that are left in
our sector are

H1|QQ̃i = 2K̂|QQ̃i , H2|Q̃Qi = 22K̂|Q̃Qi (2.8)

where K̂ = KSU(2)L . Rescaling the Hamiltonian by an overall 2 and choosing the basis
(2.6) we get (2.7).

XZ sector
In this sector we will consider operators composed of the bifundamental field X and

the adjoint field Z. To find the Hamiltonian we will need the Q̃ij F-terms:

FQ̃12
= i(g2�2Q21 � g1Q21�1) , FQ̃21

= i(g1�1Q12 � g2Q12�2) (2.9)

These lead to the interactions shown in Figure 3.
We will again divide by an overall factor of g1g2, resulting in the Hamiltonian:
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As before, the upper left block contains the interactions with the first gauge group on
the left, while the lower right block the opposite. The state space is again truncated as
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1�2eip2+ei(p1+p2)

S = SXXZ()

S̃ = SXXZ(
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
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⇠ = ✏1 + ✏2

+ fermions

We introduce and study tetrahedron instantons, which can be realized in string theory

by D1-branes probing a configuration of intersecting D7-branes in flat spacetime with a

nonzero constant background B-field. Physically they capture instantons on C3 in the

presence of the most general intersecting codimention-two supersymmetric defects. More-

over, we construct the tetrahedron instantons as particular solutions of general instanton

equations in noncommutative field theory. We analyze the moduli space of tetrahedron

instantons and discuss the geometric interpretations. We compute the instanton partition

function both via the equivariant localization on the moduli space of tetrahedron instan-

tons and via the elliptic genus of the worldvolume theory on the D1-branes probing the

intersecting D7-branes, obtaining the same result. The instanton partition function of the

tetrahedron instantons lies between the higher-rank Donaldson-Thomas invariants on C3

and the partition function of the magnificent four model, which is conjectured to be the

mother of all instanton partition functions. Finally, we show that the instanton partition

function admits a free field representation.
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Quasi-Hopf symmetry
 As for marginal deformations of N=4 SYM.


 N=2 SCFTs enjoy a quasi-Hopf symmetry algebra.


 To discover it look at the F-terms.


 They define a (complex 3D) quantum plane.


 The R-matrix at the quantum plane limit (Braid limit)

infinite–dimensional symmetry is an affine quantum group. For example, for the quasi–triangular Hopf
algebra Uq(su(3)), introducing an extra parameter to the algebra it is possible to extend it to an affine
quantum group [49, 63]. We will only discuss Hopf algebras related toR–matrices without spectral–parameter
dependence. However, for the integrable cases we will make some connections to the known R–matrices with
spectral–parameter dependence. It will be interesting to uncover a connection between the Hopf algebra we
find for the general case and an affine version or an elliptic quantum group.

In the next section we will introduce Hopf algebras of the type we will later (in section four) see appearing
in the Leigh-Strassler deformations of N = 4 SYM.

3 Introducing Hopf algebras

The plan of this section is to introduce some basic ingredients about Hopf algebras which will be essential
for the analysis in the next section where we will show how a Hopf algebra structure appears in our physical
system. For more reading on these basics we refer to e.g. [64, 49, 63, 65].

3.1 Quantum linear algebra

One of the most concrete ways of thinking about quantum symmetries is perhaps in terms of quantum
linear algebra. Quantum linear algebra works in analogy with linear algebra. Thus the quantum vector
space consists of quantum vectors x = (xi) and quantum co-vectors u = (ui) , where the elements xi and ui

take their values in a noncommutative space V . Linear transformations are described by quantum matrices
t = {tij}, which can be thought of as ordinary matrices with the difference that the elements tij are now
operators instead of numbers.

In quantum vector algebra it is common to specify the commutation relations between vector elements,
and between co-vector elements, using a matrix R [66]. This is a |||C–valued matrix acting on the noncom-
mutative space V ⊗ V . Using the tensor components of the matrix R, the relation can be written as

λxbxa = Rab
jlx

jxl , (3.1)

λuaub = ujuiR
ji
ba , (3.2)

where λ is one of the eigenvalues of the matrix R̂ab
kl := Rba

kl, or without indices R̂ := PR. Here P is the
permutation matrix, P ij

kl = δjkδ
i
l . Then a quantum symmetry could be considered to be the transforma-

tion of the quantum vector and quantum co-vector which preserves the forms (3.1) and (3.2). Thus the
transformations under consideration are

x′j = tjlx
l , and u′

j = ul(t
−1)lj . (3.3)

Here we have made the assumption that t has an inverse (we will soon introduce a more precise notion, that
of an antipode), otherwise the co–plane should have been defined in a different way. As will be clear, this
choice is natural when one is interested in quantum generalisations of GL(n). It can be checked that the
transformations (3.3) will preserve the forms of (3.1) and (3.2) if the elements tij satisfy

Ri k
a bt

a
jt

b
l = tkbt

i
aR

a b
j l , (3.4)

where, in performing the calculations, it is assumed that the elements tij commute with the vector and co-
vector elements. Equations (3.4) go under the name of FRT [66], or simply RTT, relations. They give rise
to what is known as a right/left A(R)-co-module algebra, where A(R) will be a bialgebra with generators
tij soon to be defined.

3.1.1 An example

But first, let us make all this more concrete with an example. The most famous one is Manin’s quantum
plane:

0 = qxy − yx , where x = x1 y = x2 (3.5)
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 The superpotential is invariant under the quantum group.
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The quantum plane is invariant under the transformations                    . 
They obey the algebra                which is obtained using the Rtt relations:

Ex. the Manin quantum plane
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and the corresponding co–plane

0 = vw − qwv , where v = u1 w = u2 . (3.6)

This quantum plane arises from (3.1) when using the Uq(sl(2)) R–matrix:

R = q−
1
2





q 0 0 0
0 1 q − q−1 0
0 0 1 0
0 0 0 q



 , (3.7)

where the eigenvalue λ = q1/2 has been chosen. We may ask whether there exists a linear transformation

x′i = tijx
j , (3.8)

which preserves this quantum plane. This is indeed the case, when the elements tij satisfy

t11t
1
2 = q−1t12t

1
1 , t11t

2
1 = q−1t21t

1
1 , t12t

2
2 = q−1t22t

1
2 , t21t

2
2 = q−1t22t

2
1 ,

t12t
2
1 = t21t

1
2 , t11t

2
2 − t22t

1
1 = (q−1 − q)t12t

2
1 ,

(3.9)

which we leave as an exercise for the interested reader. The above relations can be deduced from (3.4) using
the R–matrix (3.7). The matrix t = {tij} has many similarities with the matrix representation of a group. In

particular, assuming that the elements tij
′
commute with the elements tij , then tlm

′′
= tli

′
tim also represents

a generator of the above algebra.
If we now demand the form invariance of the expression

f(x, y) := xy − q−1yx , (3.10)

under the quantum symmetry, we need to impose an extra constraint on the generators tij . Defining the
quantum determinant as D := t11t

2
2 − q−1t21t

1
2, it can be shown that it is central, i.e. it commutes with

all the generators tij and we can therefore make a further quotient D = 1 of the algebra, in addition to the
quadratic relations. This defines out of the quantum deformation of GL(2) a quantum deformation of SL(2).
Doing this we obtain that f(x′, y′) = f(x, y). This will be most relevant when constructing the Hopf algebra
in the next section.

As will be clear from the definition below, the tij are the generators of a quantum matrix bialgebra.
The special case considered above is not just a bialgebra, but a very special Hopf algebra which is dual to
a quasi–triangular Hopf algebra, the universal enveloping algebra Uq(sl(2)). See appendix A for the basic
definitions of bialgebras and Hopf algebras.

3.2 Quantum matrix algebra

We now discuss how the general definitions of bialgebras and Hopf algebras in Appendix A apply to the
matrix algebra case. In the following Mn is the space of n× n matrices.

Quantum matrix bialgebra

Let R be an element of Mn⊗Mn. The bialgebra A(R) of quantum matrices is defined as being generated
by 1 and n2 indeterminates t = {tij} with

Ri k
a bt

a
jt

b
l = tkbt

i
aR

a b
j l, ∆tij =

∑

a

tia ⊗ taj , εtij = δij (3.11)

where ∆ is the comultiplication operator and ε the counit (see Appendix A). Note that the multiplication in

the above example, tlm
′′
= tli

′
tim, where the elements tij

′
were assumed to commute with the elements tij , is

nothing but a realisation of the co-product ∆.
It will be useful to think of the algebra A(R) as a quotient algebra of a free algebra, A(R) = |||C[[tij ]]/I,

where I is the ideal generated by the quadratic relations coming from the RTT relations (the first relation
in (3.11)).
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matrix algebra case. In the following Mn is the space of n× n matrices.

Quantum matrix bialgebra

Let R be an element of Mn⊗Mn. The bialgebra A(R) of quantum matrices is defined as being generated
by 1 and n2 indeterminates t = {tij} with

Ri k
a bt

a
jt

b
l = tkbt

i
aR

a b
j l, ∆tij =

∑

a

tia ⊗ taj , εtij = δij (3.11)

where ∆ is the comultiplication operator and ε the counit (see Appendix A). Note that the multiplication in

the above example, tlm
′′
= tli

′
tim, where the elements tij

′
were assumed to commute with the elements tij , is

nothing but a realisation of the co-product ∆.
It will be useful to think of the algebra A(R) as a quotient algebra of a free algebra, A(R) = |||C[[tij ]]/I,

where I is the ideal generated by the quadratic relations coming from the RTT relations (the first relation
in (3.11)).
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and the corresponding co–plane

0 = vw − qwv , where v = u1 w = u2 . (3.6)

This quantum plane arises from (3.1) when using the Uq(sl(2)) R–matrix:

R = q−
1
2





q 0 0 0
0 1 q − q−1 0
0 0 1 0
0 0 0 q



 , (3.7)

where the eigenvalue λ = q1/2 has been chosen. We may ask whether there exists a linear transformation

x′i = tijx
j , (3.8)

which preserves this quantum plane. This is indeed the case, when the elements tij satisfy

t11t
1
2 = q−1t12t

1
1 , t11t

2
1 = q−1t21t

1
1 , t12t

2
2 = q−1t22t

1
2 , t21t

2
2 = q−1t22t

2
1 ,

t12t
2
1 = t21t

1
2 , t11t

2
2 − t22t

1
1 = (q−1 − q)t12t

2
1 ,

(3.9)

which we leave as an exercise for the interested reader. The above relations can be deduced from (3.4) using
the R–matrix (3.7). The matrix t = {tij} has many similarities with the matrix representation of a group. In

particular, assuming that the elements tij
′
commute with the elements tij , then tlm

′′
= tli

′
tim also represents

a generator of the above algebra.
If we now demand the form invariance of the expression

f(x, y) := xy − q−1yx , (3.10)

under the quantum symmetry, we need to impose an extra constraint on the generators tij . Defining the
quantum determinant as D := t11t

2
2 − q−1t21t

1
2, it can be shown that it is central, i.e. it commutes with

all the generators tij and we can therefore make a further quotient D = 1 of the algebra, in addition to the
quadratic relations. This defines out of the quantum deformation of GL(2) a quantum deformation of SL(2).
Doing this we obtain that f(x′, y′) = f(x, y). This will be most relevant when constructing the Hopf algebra
in the next section.
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infinite–dimensional symmetry is an affine quantum group. For example, for the quasi–triangular Hopf
algebra Uq(su(3)), introducing an extra parameter to the algebra it is possible to extend it to an affine
quantum group [49, 63]. We will only discuss Hopf algebras related toR–matrices without spectral–parameter
dependence. However, for the integrable cases we will make some connections to the known R–matrices with
spectral–parameter dependence. It will be interesting to uncover a connection between the Hopf algebra we
find for the general case and an affine version or an elliptic quantum group.

In the next section we will introduce Hopf algebras of the type we will later (in section four) see appearing
in the Leigh-Strassler deformations of N = 4 SYM.

3 Introducing Hopf algebras

The plan of this section is to introduce some basic ingredients about Hopf algebras which will be essential
for the analysis in the next section where we will show how a Hopf algebra structure appears in our physical
system. For more reading on these basics we refer to e.g. [64, 49, 63, 65].

3.1 Quantum linear algebra

One of the most concrete ways of thinking about quantum symmetries is perhaps in terms of quantum
linear algebra. Quantum linear algebra works in analogy with linear algebra. Thus the quantum vector
space consists of quantum vectors x = (xi) and quantum co-vectors u = (ui) , where the elements xi and ui

take their values in a noncommutative space V . Linear transformations are described by quantum matrices
t = {tij}, which can be thought of as ordinary matrices with the difference that the elements tij are now
operators instead of numbers.

In quantum vector algebra it is common to specify the commutation relations between vector elements,
and between co-vector elements, using a matrix R [66]. This is a |||C–valued matrix acting on the noncom-
mutative space V ⊗ V . Using the tensor components of the matrix R, the relation can be written as

λxbxa = Rab
jlx

jxl , (3.1)

λuaub = ujuiR
ji
ba , (3.2)

where λ is one of the eigenvalues of the matrix R̂ab
kl := Rba

kl, or without indices R̂ := PR. Here P is the
permutation matrix, P ij

kl = δjkδ
i
l . Then a quantum symmetry could be considered to be the transforma-

tion of the quantum vector and quantum co-vector which preserves the forms (3.1) and (3.2). Thus the
transformations under consideration are

x′j = tjlx
l , and u′

j = ul(t
−1)lj . (3.3)

Here we have made the assumption that t has an inverse (we will soon introduce a more precise notion, that
of an antipode), otherwise the co–plane should have been defined in a different way. As will be clear, this
choice is natural when one is interested in quantum generalisations of GL(n). It can be checked that the
transformations (3.3) will preserve the forms of (3.1) and (3.2) if the elements tij satisfy

Ri k
a bt

a
jt

b
l = tkbt

i
aR

a b
j l , (3.4)

where, in performing the calculations, it is assumed that the elements tij commute with the vector and co-
vector elements. Equations (3.4) go under the name of FRT [66], or simply RTT, relations. They give rise
to what is known as a right/left A(R)-co-module algebra, where A(R) will be a bialgebra with generators
tij soon to be defined.

3.1.1 An example

But first, let us make all this more concrete with an example. The most famous one is Manin’s quantum
plane:

0 = qxy − yx , where x = x1 y = x2 (3.5)
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qxy = yx

Since the discovery of the Yang-Mills instantons as topologically nontrivial field con-

figurations that minimize the Yang-Mills action in four-dimensional Euclidean spacetime

[? ], many important developments on the applications of instantons arose in both physics

[? ? ? ] and mathematics [? ? ]. In the Atiyah-Drinfield-Hitchin-Manin (ADHM) con-

struction [? ], the moduli space of Yang-Mills instantons on R4 is given as a hyper-Kahler

quotient. In addition, the ADHM construction can be derived in a physically intuitive way

using string theory [? ? ? ]. For example, the moduli space Mn,k of SU(n) instantons

of charge k is given by the Higgs branch of the supersymmetric gauge theory living on k

D1-branes probing a stack of n coincident D5-branes in type IIB superstring theory. To

avoid the noncompactness of Mn,k due to small instantons, Nakajima introduced a smooth

manifold fMn,k, which can be obtained from the Uhlenbeck compactification of Mn,k by

resolving the singularities [? ]. Thereafter Nekrasov and Schwarz showed that fMn,k can

be interpreted as the moduli space of U(n) instantons on noncommutative R4 [? ], and can

be realized in string theory by turning on a nonzero constant background B-field [? ].

The moduli space fMn,k admits a U(1)2 action which stems from the rotation symmetry

of the spacetime R4, and a U(n) action which rotates the gauge orientation at infinity.

Although fMn,k is noncompact, because the instantons can run away to infinity of the

spacetime R4, the T-equivariant symplectic volume Zk of fMn,k is still well-defined [?

], with T being the maximal torus of U(1)2 ⇥ U(n). Using the equivariant localization

theorem [? ], Zk can be evaluated exactly and is given by a sum over a collection of

random partitions. Assembling Zk with all k � 0 into a generating function, Nekrasov

obtained the instanton partition function Z =
P

k�0 q
kZk of four-dimensional N = 2

SU(n) supersymmetric Yang-Mills theory in the ⌦-background [? ]. It turns out that both

the Seiberg-Witten e↵ective prepotential [? ? ] and the couplings to the background

gravitational fields [? ? ] can be derived rigorously from Z [? ? ? ? ? ? ]. The instanton

partition function is also related to the A-model topological strings on two-dimensional

Riemann surfaces [? ? ? ? ], the Virasoro/W-algebra conformal blocks [? ? ], and
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3D quantum planes classified

where ei is the Temperley–Lieb generator acting on spin sites i and i+ 1, which is related to the R–matrix
(3.7) as follows

ei = qI − q1/2R̂ . (3.19)

Thus the Hamiltonian (3.18) commutes with t⊗L and the Temperley–Lieb generator ei is in the same
equivalence class as R̂. In the same way the full holomorphic spin chain Hamiltonian (2.5) representing
the planar one–loop dilatation operator is related to R̂, which describes (as we will show) the Hopf algebra
describing the symmetry of the Leigh-Strassler deformation. When doing the Hopf algebra calculations in
appendices B and C, we will find it convenient to use R̂, because of the simple way it is expressed in terms
of the tensor Eijk that will be defined in the next paragraph.

3.3 The three-dimensional quantum plane

Let us now briefly review some aspects of work by Ewen and Ogievetsky [68], which has provided the
inspiration for much of our approach. That work is concerned with the classification of three–dimensional
quantum planes, defined as a polynomial algebra with three elements obeying quadratic relations such that
the Poincaré series of the algebra coincides with the classical one.6 Ewen and Ogievetsky find that for three–
dimensional planes this condition is equivalent to the matrix R generating the quantum plane satisfying the
YBE. They start out by defining the quadratic relations

Eα
ijx

ixj = 0, uiujF
ij
α = 0 . (3.20)

Demanding that the independent relations be the same as in the classical case they obtain three linearly
independent relations. They introduce two tensors Eijk and F ijk defining the quantum plane and the
quantum co–plane respectively:

Eijkx
ixjxk = 0 , and uiujukF

ijk = 0 . (3.21)

These tensors are related to the ones in (3.20) through:

Eijk = Eα
ijfαk, and Elij = elαE

α
ij , (3.22)

where the fαk and elα are related to the cyclicity properties of the Eijk tensor as follows

Eijk = Ql
kElij , with Qi

j = fαj(e
−1)αi . (3.23)

We will be interested in the case when Q is the identity matrix such that Eijk becomes periodic in the
indices. As will be clear, this is forced upon us by the physical system we have in mind, and in particular
the wish to preserve the Z3 symmetry of the superpotential mentioned above. For similar reasons we also
want the co–plane to have the same nonzero components as the plane. The condition provided in [68] for R̂
to generate the appropriate algebra is the following

R̂ij
kl = δikδ

j
l − EklmFmij , (3.24)

where Eijk and F ijk need to satisfy

δij =
1

2
EjmnF

mni , (3.25)

and
EajmFmibEebkF

kcj = δcaδ
i
e + δiaδ

c
e . (3.26)

Apart from [68], these equations were later studied in detail in [69] (see also [70] for some background)
in order to classify the SL(3) cases, and it was found they only have a solution in exceptional cases. We
should point out that we have rescaled the Eijk and F ijk tensors relative to [68]. In particular, their formula
equivalent to (3.24) would have a 2 in front of EklmFmij . This is just a choice of normalisation of the tensors
and has no real significance. On the other hand, once we have fixed this normalisation (e.g. by requiring
(3.25)) the relative factor between the first identity term and the second term in (3.24) is important for the

6This essentially means that the number of relations obeyed by the quantum algebra generators at every degree (quadratic,
cubic, etc.) is the same as in the classical algebra.
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Eα
ijx

ixj = 0, uiujF
ij
α = 0 . (3.20)
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α
ij , (3.22)
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−1)αi . (3.23)
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1

2
EjmnF

mni , (3.25)

and
EajmFmibEebkF
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i
e + δiaδ

c
e . (3.26)
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The R-matrix is given by:

Using this R-matrix we get back the right quantum plane relations 
and through the Rtt relations we can write down the quantum algebra 

(symmetries of the quantum plane)

[Ewen,Ogievetsky1994]
Parameterise using two tensors Eijk and Fijk:

Quantum co-plane

[Månsson,Zoubos2008][Dlamini,Zoubos2016&19]
Used successfully marginally deformed N=4 SYM

Quantum plane



The Lagrangian is invariant under the transformations

which form a quantum version of SU(3) defined by the Rtt relations.

Leigh–Strassler theory  

where H =
∑L

i=1 Hi,i+1 and s the antipode discussed above. However, the viewpoint we would like to take
in this work is that this Hopf symmetry of the one–loop Hamiltonian is actually already present at the level
of the classical Lagrangian.

An early indication that there exists a quantum symmetry related to the general Leigh–Strassler theory
appeared in the work of [72]. Those authors noticed that the moduli space of vacua of the theory (obtained
by minimising the potential) has a (cyclic) quantum plane structure:

φ1φ2 = qφ2φ1 − h(φ3)2

φ2φ3 = qφ3φ2 − h(φ1)2

φ3φ1 = qφ1φ3 − h(φ2)2
(4.2)

where φi denotes the expectation value of the scalar part of Φi. Correspondingly we could write the conju-
gated relations, defining a cyclic co–plane. As discussed earlier, one possible definition of quantum groups is
as the symmetry groups of quantum planes. Thus, by considering the geometry of the moduli space we see
that there should be an appropriately defined quantum group acting on it. However, the work of [72] did
not specify precisely which quantum symmetry corresponds to the general (q, h) deformation.

Motivated by [72], in the following we will explore the symmetries of the quantum plane in (4.2). How-
ever, we will be even more general, and will ask which are the quantum transformations which leave the
superpotential itself invariant, rather than just its space of solutions.

4.1 Deforming the superpotential

We will start by exhibiting the full deformed superpotential, with both q and h nonzero, in a form which
will help to make the relation to Hopf algebras, in the way discussed in the previous section, obvious. This
will result in a two parameter deformation of the su(3) algebra.

Let us start from the N = 4 superpotential:

WN=4 = gTr
{
Φ1[Φ2,Φ3]

}
=

g

3
εijkTr

{
ΦiΦjΦk

}
. (4.3)

Here the superpotential is expressed via the SU(3)–invariant tensor εijk. We would now like to see the
Leigh–Strassler superpotential as arising from deforming the εijk tensor to Eijk, a tensor invariant under a
quantum deformation of SU(3). The goal is to prove its invariance under some generators t, which form a
Hopf algebra, as explained in section 3. We will also of course need invariance of the hermitian conjugate of
the superpotential, which will define for us the co–tensor F ijk. Let us use the trace structure to write the
Leigh-Strassler superpotential (2.1) as

WLS =
κ

3
Tr

{
Φ1Φ2Φ3+Φ2Φ3Φ1+Φ3Φ1Φ2−q(Φ1Φ3Φ2+Φ2Φ1Φ3+Φ3Φ2Φ1)+h[(Φ1)3+(Φ2)3+(Φ3)3]

}
. (4.4)

Our main interest is the form invariance of the superpotential which is related to the three–dimensional
quantum plane, in an analogous way to the example in the previous section exhibiting the relation between
Manin’s quantum plane and the form invariance in (3.10). To investigate form invariance, we express the
superpotential and its hermitian conjugate in terms of the tensors Eijk and F ijk as

WLS +W†
LS =

1

3
Tr

(
EijkΦ

iΦjΦk + ΦiΦjΦkF
ijk

)
. (4.5)

Comparing with (4.4), and using the notation of [68], we find:

F ijk = Eijk (the bar denotes complex conjugation),

E123 = E231 = E312 =
1

d
,

E321 = E213 = E132 = − q

d
,

E111 = E222 = E333 =
h

d
, where d2 =

1 + q̄q + h̄h

2
.

(4.6)
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Form invariance for f(x, y, z) and g(x, y, z) together is equivalent to invariance ofH ij
kl . H

ij
kl is an hermitian

operator which gives the reality condition for the Hopf algebra that, as we will show, is generated by it. It
is necessary for the existence of a tij

∗
generator.

A Hopf algebra of this type is called real type if the following condition on the R–matrix is satisfied:

Ri j
k l = Rl k

j i (4.15)

which is equivalent to that R̂i k
j l = Rk i

j l is hermitian as a 9× 9 matrix. Here Hij
kl will play the role of R̂i k

j l,
and since H is hermitian (2.5) we are guaranteed to obtain an R–matrix of real type. When R is of real
type the definition

tij
∗
= S(tij) = sij (4.16)

is compatible with the relations Rt1t2 = t2t1R of the Hopf algebra A(R). So, as in our example in section
3.1.1, the co–plane coordinates transform according to the antipode.

Our first question is now whether we can have a non–trivial bialgebra generated by Hij
kl as explained in

the previous section, i.e. whether there exists a a non–trivial solution to

Hij
klt

k
mtln = tikt

j
lH

kl
mn . (4.17)

Note that the same algebra can equally well be generated by any R̂matrices belonging to the same equivalence
class as R̂ij

kl = Hij
kl, equation (3.17).

If this is the case, we would then like to show the existence of an antipode from which it will also follow
that the superpotential is invariant, since it will imply that the quantum determinant is central. At the
same time, having an antipode will imply (4.1) and thus guarantee invariance of the spin chain Hamiltonian
under the Hopf algebra. We will turn to the analysis of (4.17) after first exhibiting the R–matrix related to
our Hamiltonian.

4.1.1 The R–matrix for the general deformation

For concreteness, let us give here the form of the R–matrix that follows from the choice (4.6) via (3.24):

R =
1

2d2





























1+qq̄−hh̄ 0 0 0 0 −2h̄ 0 2h̄q 0
0 2q̄ 0 1−qq̄+hh̄ 0 0 0 0 2hq̄
0 0 2q 0 −2h 0 qq̄+hh̄−1 0 0
0 qq̄+hh̄−1 0 2q 0 0 0 0 −2h
0 0 2h̄q 0 1+qq̄−hh̄ 0 −2h̄ 0 0

2hq̄ 0 0 0 0 2q̄ 0 1−qq̄+hh̄ 0
0 0 1−qq̄+hh̄ 0 2hq̄ 0 2q̄ 0 0

−2h 0 0 0 0 qq̄+hh̄−1 0 2q 0
0 −2h̄ 0 2h̄q 0 0 0 0 1+qq̄−hh̄





























(4.18)

The first observation about the above R–matrix is that is cyclic, Rab
cd = R(a+1)(b+1)

(c+1)(d+1) = R(a−1)(b−1)
(c−1)(d−1). This

feature, which can be traced back to the cyclic quantum plane relations (4.2) (which in turn was forced upon
us by the need to preserve the cyclic Z3 symmetry) distinguishes this R–matrix from those corresponding to
standard quantum deformations of SU(3), see e.g. [64, 68]. Those are related to the symmetries of ordered
Manin planes and are thus not cyclic.

It is also straightforward to check that this R–matrix leads to the expression (cf. (3.10))

f(xa, xa+1) = Ra a+1
k lx

kxl − xa+1xa =
(
xaxa+1 − qxa+1xa + hxa−1

a−1x
a−1
a−1

)
· q̄/d2 (4.19)

with consistent relations from f(xa+1, xa) and f(xa, xa) and similarly for the co–plane coordinates. Note
that R̂ has 1 as one of its eigenvalues, so we chose λ=1 in defining the quantum plane (cf. (3.1)). Setting
f(xa, xa+1) = 0 we thus reproduce the cyclic quantum plane structure in (4.2). However, according to
the general discussion in section 3, and as will be discussed more thoroughly in the following, the quantum
algebra produced by R leaves not just f(xa, xa+1)=0 invariant, but the form of the full “off shell” expression
f(xa, xa+1). It will thus lead to a symmetry of the Lagrangian itself and not only of the moduli space.

The final important property of (4.18) is that, for generic values of the deformation parameters, it does
not satisfy the Yang–Baxter equation. It is thus a slight abuse of language to call it an R–matrix (to
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that there should be an appropriately defined quantum group acting on it. However, the work of [72] did
not specify precisely which quantum symmetry corresponds to the general (q, h) deformation.

Motivated by [72], in the following we will explore the symmetries of the quantum plane in (4.2). How-
ever, we will be even more general, and will ask which are the quantum transformations which leave the
superpotential itself invariant, rather than just its space of solutions.

4.1 Deforming the superpotential

We will start by exhibiting the full deformed superpotential, with both q and h nonzero, in a form which
will help to make the relation to Hopf algebras, in the way discussed in the previous section, obvious. This
will result in a two parameter deformation of the su(3) algebra.

Let us start from the N = 4 superpotential:

WN=4 = gTr
{
Φ1[Φ2,Φ3]

}
=

g

3
εijkTr

{
ΦiΦjΦk

}
. (4.3)

Here the superpotential is expressed via the SU(3)–invariant tensor εijk. We would now like to see the
Leigh–Strassler superpotential as arising from deforming the εijk tensor to Eijk, a tensor invariant under a
quantum deformation of SU(3). The goal is to prove its invariance under some generators t, which form a
Hopf algebra, as explained in section 3. We will also of course need invariance of the hermitian conjugate of
the superpotential, which will define for us the co–tensor F ijk. Let us use the trace structure to write the
Leigh-Strassler superpotential (2.1) as

WLS =
κ

3
Tr

{
Φ1Φ2Φ3+Φ2Φ3Φ1+Φ3Φ1Φ2−q(Φ1Φ3Φ2+Φ2Φ1Φ3+Φ3Φ2Φ1)+h[(Φ1)3+(Φ2)3+(Φ3)3]

}
. (4.4)

Our main interest is the form invariance of the superpotential which is related to the three–dimensional
quantum plane, in an analogous way to the example in the previous section exhibiting the relation between
Manin’s quantum plane and the form invariance in (3.10). To investigate form invariance, we express the
superpotential and its hermitian conjugate in terms of the tensors Eijk and F ijk as

WLS +W†
LS =

1

3
Tr

(
EijkΦ

iΦjΦk + ΦiΦjΦkF
ijk

)
. (4.5)

Comparing with (4.4), and using the notation of [68], we find:

F ijk = Eijk (the bar denotes complex conjugation),

E123 = E231 = E312 =
1

d
,

E321 = E213 = E132 = − q

d
,

E111 = E222 = E333 =
h

d
, where d2 =

1 + q̄q + h̄h

2
.

(4.6)
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where H =
∑L
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where the normalisation is such that equation (3.25) in section 3 is satisfied. However, comparing with
the finiteness condition (2.2), we find that the coefficient in front of the superpotential is precisely what is
required by planar finiteness, in other words κ = 1/d. Recall that (3.25) was required to obtain an R–matrix
satisfying the YBE, but since we will be working in a more general setting we are in principle free to choose
the normalisation of the tensors Eijk and F ijk. It is however a peculiar coincidence that the most natural
way to choose the normalisation agrees with what is obtained for the planar finiteness condition. As we will
see, this normalisation also has its advantages when expressing the quantum determinant. Note that in our
discussion of the algebra below we will not assume that we are in the planar limit.

These choices for E and F were included in the analysis of [68], even though the condition to fulfil the
classical Poincaré series was too strong for generic values of q and h to be included in their definition of a
quantum plane. The case of arbitrary q and h = 0 was included for the quantum plane but with a different
co–plane, and similarly for the case of arbitrary h and q = 0. For the case h = 0, Eijk is proportional to the
q–epsilon tensor as defined in Majid [64].

Let us now recall that the component scalar field part of the F-term Lagrangian can be written as [47]:

LF,s = TrφiφjH
ij
lmφlφm (4.7)

where H ij
lm are the components of the hermitian matrix H , given explicitly in (2.5), describing the local

action of the one-loop dilatation operator on nearest neighbours,

H = Hjk
mnejm ⊗ ekn where Hjk

mn = EmnaF
ajk . (4.8)

Here we introduced the operators emn, which are defined through their action on the spin state |k〉, as
emn|k〉 = δnk|m〉.

We would like to show that there exists a quantum algebra transformation acting on Φi as

Φi → tijΦ
j (4.9)

under which the deformed superpotential is invariant. Invariance of the superpotential implies that

EijkΦ
iΦjΦk → Eijkt

i
lt
j
mtknΦ

lΦmΦn = ElmnΦ
lΦmΦn (4.10)

i.e. that the tij generators we are interested in finding satisfy

Eijkt
i
lt
j
mtkn = Elmn . (4.11)

A similar condition arises by requiring invariance of the hermitian conjugate of the superpotential:

Φi → Φjt
j
i

∗ ⇒ tli
∗
tmj

∗tnk
∗F ijk = F lmn . (4.12)

These relations impose strong restrictions on the generators tij of the algebra, which, as we will see, are
compatible with the cubic relations derived for our Hopf algebra in Appendix C. The condition (4.11) above
should be compared to the condition (3.27) for the three dimensional quantum plane in the previous section,
from which it follows that the quantum determinant occurring in (3.27) should be set to one.

Since the non–abelian nature of the scalar superfields is not relevant for the following discussion (the
generators of SU(N) being taken to commute with the tij) from now on we will return to the quantum plane
notation of section 3 and look at the form invariance of the expression

f(x, y, z) := Eijkx
ixjxk (4.13)

where we have associated each of the three holomorphic scalars to one of the quantum plane coordinates.
As discussed, setting the quantum determinant to one is just the step passing from a quantum deformation

of GL(3) to that of SL(3). However we also need to require form invariance of

g(x̄, ȳ, z̄) := x̄ix̄j x̄kF
ijk = f̄(x̄, ȳ, z̄) (4.14)

which assures the reality condition. We will see that this results in a deformation of SU(3) instead of SL(3).
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3D Quantum plane
The quantum co-plane: hermitian conjugate:

where ei is the Temperley–Lieb generator acting on spin sites i and i+ 1, which is related to the R–matrix
(3.7) as follows

ei = qI − q1/2R̂ . (3.19)

Thus the Hamiltonian (3.18) commutes with t⊗L and the Temperley–Lieb generator ei is in the same
equivalence class as R̂. In the same way the full holomorphic spin chain Hamiltonian (2.5) representing
the planar one–loop dilatation operator is related to R̂, which describes (as we will show) the Hopf algebra
describing the symmetry of the Leigh-Strassler deformation. When doing the Hopf algebra calculations in
appendices B and C, we will find it convenient to use R̂, because of the simple way it is expressed in terms
of the tensor Eijk that will be defined in the next paragraph.

3.3 The three-dimensional quantum plane

Let us now briefly review some aspects of work by Ewen and Ogievetsky [68], which has provided the
inspiration for much of our approach. That work is concerned with the classification of three–dimensional
quantum planes, defined as a polynomial algebra with three elements obeying quadratic relations such that
the Poincaré series of the algebra coincides with the classical one.6 Ewen and Ogievetsky find that for three–
dimensional planes this condition is equivalent to the matrix R generating the quantum plane satisfying the
YBE. They start out by defining the quadratic relations

Eα
ijx

ixj = 0, uiujF
ij
α = 0 . (3.20)

Demanding that the independent relations be the same as in the classical case they obtain three linearly
independent relations. They introduce two tensors Eijk and F ijk defining the quantum plane and the
quantum co–plane respectively:

Eijkx
ixjxk = 0 , and uiujukF

ijk = 0 . (3.21)

These tensors are related to the ones in (3.20) through:

Eijk = Eα
ijfαk, and Elij = elαE

α
ij , (3.22)

where the fαk and elα are related to the cyclicity properties of the Eijk tensor as follows

Eijk = Ql
kElij , with Qi

j = fαj(e
−1)αi . (3.23)

We will be interested in the case when Q is the identity matrix such that Eijk becomes periodic in the
indices. As will be clear, this is forced upon us by the physical system we have in mind, and in particular
the wish to preserve the Z3 symmetry of the superpotential mentioned above. For similar reasons we also
want the co–plane to have the same nonzero components as the plane. The condition provided in [68] for R̂
to generate the appropriate algebra is the following

R̂ij
kl = δikδ

j
l − EklmFmij , (3.24)

where Eijk and F ijk need to satisfy

δij =
1

2
EjmnF

mni , (3.25)

and
EajmFmibEebkF

kcj = δcaδ
i
e + δiaδ

c
e . (3.26)

Apart from [68], these equations were later studied in detail in [69] (see also [70] for some background)
in order to classify the SL(3) cases, and it was found they only have a solution in exceptional cases. We
should point out that we have rescaled the Eijk and F ijk tensors relative to [68]. In particular, their formula
equivalent to (3.24) would have a 2 in front of EklmFmij . This is just a choice of normalisation of the tensors
and has no real significance. On the other hand, once we have fixed this normalisation (e.g. by requiring
(3.25)) the relative factor between the first identity term and the second term in (3.24) is important for the

6This essentially means that the number of relations obeyed by the quantum algebra generators at every degree (quadratic,
cubic, etc.) is the same as in the classical algebra.
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The Hamiltonian is obtained by:

The R-matrix:
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AdS point of view 

Gravity dual reason why we have a quantum algebra:

NSNS B-field turned on the C3 (transverse to the D3)

When there is a B-field the open strings on the D3 
branes see a non-commutative geometry.

Open strings see a quantum plane!

 Marginally deformed orbifolds also have a B-field on the orbifolded C2⊂C3  
(transverse to the D3) allowing us to go away from the orbifold point
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The Z2 quiver quantum group  

where H =
∑L

i=1 Hi,i+1 and s the antipode discussed above. However, the viewpoint we would like to take
in this work is that this Hopf symmetry of the one–loop Hamiltonian is actually already present at the level
of the classical Lagrangian.

An early indication that there exists a quantum symmetry related to the general Leigh–Strassler theory
appeared in the work of [72]. Those authors noticed that the moduli space of vacua of the theory (obtained
by minimising the potential) has a (cyclic) quantum plane structure:

φ1φ2 = qφ2φ1 − h(φ3)2

φ2φ3 = qφ3φ2 − h(φ1)2

φ3φ1 = qφ1φ3 − h(φ2)2
(4.2)

where φi denotes the expectation value of the scalar part of Φi. Correspondingly we could write the conju-
gated relations, defining a cyclic co–plane. As discussed earlier, one possible definition of quantum groups is
as the symmetry groups of quantum planes. Thus, by considering the geometry of the moduli space we see
that there should be an appropriately defined quantum group acting on it. However, the work of [72] did
not specify precisely which quantum symmetry corresponds to the general (q, h) deformation.

Motivated by [72], in the following we will explore the symmetries of the quantum plane in (4.2). How-
ever, we will be even more general, and will ask which are the quantum transformations which leave the
superpotential itself invariant, rather than just its space of solutions.

4.1 Deforming the superpotential

We will start by exhibiting the full deformed superpotential, with both q and h nonzero, in a form which
will help to make the relation to Hopf algebras, in the way discussed in the previous section, obvious. This
will result in a two parameter deformation of the su(3) algebra.

Let us start from the N = 4 superpotential:

WN=4 = gTr
{
Φ1[Φ2,Φ3]

}
=

g

3
εijkTr

{
ΦiΦjΦk

}
. (4.3)

Here the superpotential is expressed via the SU(3)–invariant tensor εijk. We would now like to see the
Leigh–Strassler superpotential as arising from deforming the εijk tensor to Eijk, a tensor invariant under a
quantum deformation of SU(3). The goal is to prove its invariance under some generators t, which form a
Hopf algebra, as explained in section 3. We will also of course need invariance of the hermitian conjugate of
the superpotential, which will define for us the co–tensor F ijk. Let us use the trace structure to write the
Leigh-Strassler superpotential (2.1) as

WLS =
κ

3
Tr

{
Φ1Φ2Φ3+Φ2Φ3Φ1+Φ3Φ1Φ2−q(Φ1Φ3Φ2+Φ2Φ1Φ3+Φ3Φ2Φ1)+h[(Φ1)3+(Φ2)3+(Φ3)3]

}
. (4.4)

Our main interest is the form invariance of the superpotential which is related to the three–dimensional
quantum plane, in an analogous way to the example in the previous section exhibiting the relation between
Manin’s quantum plane and the form invariance in (3.10). To investigate form invariance, we express the
superpotential and its hermitian conjugate in terms of the tensors Eijk and F ijk as

WLS +W†
LS =

1

3
Tr

(
EijkΦ

iΦjΦk + ΦiΦjΦkF
ijk

)
. (4.5)

Comparing with (4.4), and using the notation of [68], we find:

F ijk = Eijk (the bar denotes complex conjugation),

E123 = E231 = E312 =
1

d
,

E321 = E213 = E132 = − q

d
,

E111 = E222 = E333 =
h

d
, where d2 =

1 + q̄q + h̄h

2
.

(4.6)
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3.1 R-matrix and Drinfeld twist in the quantum plane limit

A practical way to search for a quantum-group deformation of the symmetries of our theory
is through considering the corresponding quantum plane limit. In the gauge theory the
quantum plane arises through the F -term relations [44, 45, 66]. As discussed in [44] this
is an SU(3)-type quantum plane, of the type studied in [67], and we will follow a similar
approach below. For N = 4 SYM, setting the FZ term to zero one simply obtains the
relation XY = Y X, i.e. the classical, commutative plane, while for the �-deformation this
is modified to XY = qY X and can be attributed to the transverse coordinates xi seen by
open strings ending on the D3-branes becoming noncommutative.11 The quadratic relations
on the coordinates of the quantum plane can be derived via an appropriate R-matrix as

Ri j
k lX

kX l
= XjXi (3.4)

In [45] the R-matrix leading to the full quantum plane geometry of the Leigh-Strassler
theories was studied and shown to arise from a Drinfeld twist which does not satisfy the
cocycle equation. Therefore the quasi-Hopf setting is the appropriate one to understand
the symmetries of the Leigh-Strassler marginal deformation of the N = 4 theory.

It is thus natural to ask whether one can find a similar quantum-group structure for
the N = 2 theories we are considering in the present work. To answer this, let us start by
writing the superpotential (2.4) in a way that will make it easier to read off the quantum
plane structure. As in [45], to see this structure one first needs to write out the cyclically
related terms in the gauge theory traces (i.e. open up the gauge indices temporarily). Then
we will collect the terms which have the first gauge group to the left:

g1
⇣
�1Q12

eQ21 +Q12
eQ21�1 � �1

eQ12Q21 �
eQ12Q21�1

⌘
+ g2

⇣
eQ12�2Q21 �Q12�2

eQ21

⌘
.

(3.5)
Working in an SU(3) basis X1

= X,X2
= Y,X3

= Z, this allows us to define the deforma-
tion of the SU(3)-invariant symbol ✏ijk as

E(1)
123 = g1 , E

(1)
231 = g2 , E

(1)
312 = g1 , E

(1)
132 = �g2 , E

(1)
321 = �g1 , E

(1)
213 = �g1 , (3.6)

Here the subscript (1) indicates that the first gauge index in the corresponding terms is
that of the first gauge group. Similarly one can define for the second gauge group:

E(2)
123 = g2 , E

(2)
231 = g1 , E

(2)
312 = g2 , E

(2)
132 = �g1 , E

(2)
321 = �g2 , E

(2)
213 = �g2 , (3.7)

Using these symbols, we can write the superpotential as

W = E(1)
ijkTr1

⇣
X iXjXk

⌘
+ E(2)

ijkTr2

⇣
X iXjXk

⌘
(3.8)

In this expression, the gauge index on the left is denoted by the subscript n = 1, 212 and
this uniquely fixes the indices of the remaining terms (i.e. whether X1 is Q12 or Q21). We

11This is a statement about the transverse coordinates themselves and is independent of the fact that
they also become N ⇥N matrices when one has multiple branes.

12The index n = 1, 2 can also be understood as counting the images of quantum plane due to the orbifold.
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3.1 R-matrix and Drinfeld twist in the quantum plane limit

A practical way to search for a quantum-group deformation of the symmetries of our theory
is through considering the corresponding quantum plane limit. In the gauge theory the
quantum plane arises through the F -term relations [44, 45, 66]. As discussed in [44] this
is an SU(3)-type quantum plane, of the type studied in [67], and we will follow a similar
approach below. For N = 4 SYM, setting the FZ term to zero one simply obtains the
relation XY = Y X, i.e. the classical, commutative plane, while for the �-deformation this
is modified to XY = qY X and can be attributed to the transverse coordinates xi seen by
open strings ending on the D3-branes becoming noncommutative.11 The quadratic relations
on the coordinates of the quantum plane can be derived via an appropriate R-matrix as

Ri j
k lX

kX l
= XjXi (3.4)

In [45] the R-matrix leading to the full quantum plane geometry of the Leigh-Strassler
theories was studied and shown to arise from a Drinfeld twist which does not satisfy the
cocycle equation. Therefore the quasi-Hopf setting is the appropriate one to understand
the symmetries of the Leigh-Strassler marginal deformation of the N = 4 theory.

It is thus natural to ask whether one can find a similar quantum-group structure for
the N = 2 theories we are considering in the present work. To answer this, let us start by
writing the superpotential (2.4) in a way that will make it easier to read off the quantum
plane structure. As in [45], to see this structure one first needs to write out the cyclically
related terms in the gauge theory traces (i.e. open up the gauge indices temporarily). Then
we will collect the terms which have the first gauge group to the left:

g1
⇣
�1Q12

eQ21 +Q12
eQ21�1 � �1

eQ12Q21 �
eQ12Q21�1

⌘
+ g2

⇣
eQ12�2Q21 �Q12�2

eQ21

⌘
.

(3.5)
Working in an SU(3) basis X1

= X,X2
= Y,X3

= Z, this allows us to define the deforma-
tion of the SU(3)-invariant symbol ✏ijk as
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see that as far as the quantum plane is concerned the superpotential has split into two
terms, which is of course related to the block structure of our Hamiltonians in each sector.
To complete the picture, one needs to also define the conjugates F ijk which are related to
the conjugate superpotential W = XiXjXkF ijk. Since all couplings are taken to be real,
we simply take F ijk

(n) = E(n)
ijk .

From these tensors we can now reconstruct the Hamiltonian of each sector (2.7) and
(2.11) using the relation

(Hn)
ij
kl = E(n)

klrF
ijr
(n) . (3.9)

The reason that the Hamiltonian can be directly read off from the superpotential is that at
one loop there is a non-renormalisation theorem at work and only the F-terms contribute.
For instance, for the XY sector (free indices 1, 2), we obtain

(H1)
12
12 = E(1)

123F
123
(1) = g21 , (H1)

21
12 = E(1)

123F
213
(1) = �g21 ,

(H1)
12
21 = E(1)

213F
123
(1) = �g21 , (H1)

21
21 = E(1)

213F
213
(1) = g21 ,

(3.10)

while for the XZ sector (free indices 1, 3):

(H1)
13
13 = E(1)

132F
132
(1) = g22 , (H1)

31
13 = E(1)

132F
312
(1) = �g1g2 ,

(H1)
13
31 = E(1)

312F
132
(1) = �g1g2 , (H1)

31
31 = E(1)

312F
312
(1) = g21 ,

(3.11)

and similarly for the Y Z sector. These reproduce the upper blocks of our Hamiltonians
(2.6) and (2.10), respectively. Clearly the lower blocks H2 arise in the same way using (3.9)
for the second gauge index.

Let us now consider the quantum plane structure of the theory which arises from the
F -term relations. For the XY sector these are

g1Q12
eQ21 = g1 eQ12Q21 , g2Q21

eQ12 = g2 eQ21Q12 , (3.12)

while for the XZ sector we have

�2Q21 =
1


Q21�1 , �1Q12 = Q12�2 , (3.13)

and similarly for the Y Z sector:

�2
eQ21 =

1


eQ21�1 , �1

eQ12 =  eQ12�2 . (3.14)

We see that the SU(2) symmetry13 is undeformed in the XY sector (as the factors of g1g2
can be factored out), so the R-matrix in this sector is equivalent to the identity matrix I (its
classical value) in the quantum plane limit. However in the other two XY and Y Z sectors
the SU(2) symmetry of the N = 4 theory (and of the orbifold point) becomes deformed as
 moves away from its classical value of 1.

13Note that this undeformed and unbroken SU(2) symmetry acting on the XY sector is precisely the
extra SU(2)L global symmetry of the Z2 quiver we described in Section 2.1.
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choice c = 2
1+2 . Explicitly, the R-matrix R = PR̂ reads

R =

0

BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0
2

2+1 �
2�1
2+1 0 0 0 0 0

0
2�1
2+1

2
2+1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0
2

2+1
2�1
2+1 0

0 0 0 0 0 �
2�1
2+1

2
2+1 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 k k0 0 0 0 0 0

0 �k0 k 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 k �k0 0

0 0 0 0 0 k0 k 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCA

(3.18)

written in the same basis as (2.10), which we identify with the two-site basis xixj in (3.4).
This R-matrix does not satisfy the usual YBE, apart from the special cases  = ±1, 0. The
R-matrix (3.18) can be seen to reduce to I � I in the  ! 1 limit, as expected.

It is very intriguing to observe that (3.18) is the direct sum of two Felder SU(2) dy-
namical R-matrices, as presented in (4.8), for the special parameter values � = (1 + ⌧)/2,
⌘ = ±⌧/4 and with the rapidity fixed to u =

1
2 . The choices ⌘ = ±⌧/4 are for the upper and

lower block respectively. For these values, the coefficients of the R-matrix (4.8), normalised
by dividing out by �, reduce to the elliptic modulus k and its complement k0 =

p
1� k

related to the modular parameter m̃ = 42/(1+2)2 which, as we will see in Section 7, can
be read off from the 1-magnon dispersion relation. Note that the value u =

1
2 makes sense

as the location of the quantum plane limit on the rapidity torus, being equal to one of the
half-periods of the elliptic functions describing it. For the careful reader we note that for
rational models, the quantum plane arises at u ! 1, however that is because the torus has
been decompactified by sending the periods to infinity.

Being triangular, the R-matrix can also be factorised as

R = F21F
�1
12 = (F12)

�2 . (3.19)

with the twist being given by

F =

0

BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 ↵ � 0 0 0 0 0

0 �� ↵ 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 ↵ �� 0

0 0 0 0 0 � ↵ 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCA

with:
↵ =

+1p
2
p
1+2 ,

� =
�1p

2
p
1+2

(3.20)

We note that the twist is triangular, i.e. F21 = F�1
12 , is orthogonal as an 8 ⇥ 8 matrix

and has unit determinant. From this twist, taking appropriate care when working with our
truncated tensor product on the three-site basis, one can obtain a coassociator with which
the R-matrix (3.18) satisfies the quasi-Hopf YBE (3.3).
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where ei is the Temperley–Lieb generator acting on spin sites i and i+ 1, which is related to the R–matrix
(3.7) as follows

ei = qI − q1/2R̂ . (3.19)

Thus the Hamiltonian (3.18) commutes with t⊗L and the Temperley–Lieb generator ei is in the same
equivalence class as R̂. In the same way the full holomorphic spin chain Hamiltonian (2.5) representing
the planar one–loop dilatation operator is related to R̂, which describes (as we will show) the Hopf algebra
describing the symmetry of the Leigh-Strassler deformation. When doing the Hopf algebra calculations in
appendices B and C, we will find it convenient to use R̂, because of the simple way it is expressed in terms
of the tensor Eijk that will be defined in the next paragraph.

3.3 The three-dimensional quantum plane

Let us now briefly review some aspects of work by Ewen and Ogievetsky [68], which has provided the
inspiration for much of our approach. That work is concerned with the classification of three–dimensional
quantum planes, defined as a polynomial algebra with three elements obeying quadratic relations such that
the Poincaré series of the algebra coincides with the classical one.6 Ewen and Ogievetsky find that for three–
dimensional planes this condition is equivalent to the matrix R generating the quantum plane satisfying the
YBE. They start out by defining the quadratic relations

Eα
ijx

ixj = 0, uiujF
ij
α = 0 . (3.20)

Demanding that the independent relations be the same as in the classical case they obtain three linearly
independent relations. They introduce two tensors Eijk and F ijk defining the quantum plane and the
quantum co–plane respectively:

Eijkx
ixjxk = 0 , and uiujukF

ijk = 0 . (3.21)

These tensors are related to the ones in (3.20) through:

Eijk = Eα
ijfαk, and Elij = elαE

α
ij , (3.22)

where the fαk and elα are related to the cyclicity properties of the Eijk tensor as follows

Eijk = Ql
kElij , with Qi

j = fαj(e
−1)αi . (3.23)

We will be interested in the case when Q is the identity matrix such that Eijk becomes periodic in the
indices. As will be clear, this is forced upon us by the physical system we have in mind, and in particular
the wish to preserve the Z3 symmetry of the superpotential mentioned above. For similar reasons we also
want the co–plane to have the same nonzero components as the plane. The condition provided in [68] for R̂
to generate the appropriate algebra is the following

R̂ij
kl = δikδ

j
l − EklmFmij , (3.24)

where Eijk and F ijk need to satisfy

δij =
1

2
EjmnF

mni , (3.25)

and
EajmFmibEebkF

kcj = δcaδ
i
e + δiaδ

c
e . (3.26)

Apart from [68], these equations were later studied in detail in [69] (see also [70] for some background)
in order to classify the SL(3) cases, and it was found they only have a solution in exceptional cases. We
should point out that we have rescaled the Eijk and F ijk tensors relative to [68]. In particular, their formula
equivalent to (3.24) would have a 2 in front of EklmFmij . This is just a choice of normalisation of the tensors
and has no real significance. On the other hand, once we have fixed this normalisation (e.g. by requiring
(3.25)) the relative factor between the first identity term and the second term in (3.24) is important for the

6This essentially means that the number of relations obeyed by the quantum algebra generators at every degree (quadratic,
cubic, etc.) is the same as in the classical algebra.
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There are two copies (images) 
of the quantum plane:

XY sector the R is proportional to the identity

XZ and YZ sector

(k images for a rank k orbifold)
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and has unit determinant. From this twist, taking appropriate care when working with our
truncated tensor product on the three-site basis, one can obtain a coassociator with which
the R-matrix (3.18) satisfies the quasi-Hopf YBE (3.3).
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written in the same basis as (2.10), which we identify with the two-site basis xixj in (3.4).
This R-matrix does not satisfy the usual YBE, apart from the special cases  = ±1, 0. The
R-matrix (3.18) can be seen to reduce to I � I in the  ! 1 limit, as expected.

It is very intriguing to observe that (3.18) is the direct sum of two Felder SU(2) dy-
namical R-matrices, as presented in (4.8), for the special parameter values � = (1 + ⌧)/2,
⌘ = ±⌧/4 and with the rapidity fixed to u =

1
2 . The choices ⌘ = ±⌧/4 are for the upper and

lower block respectively. For these values, the coefficients of the R-matrix (4.8), normalised
by dividing out by �, reduce to the elliptic modulus k and its complement k0 =

p
1� k

related to the modular parameter m̃ = 42/(1+2)2 which, as we will see in Section 7, can
be read off from the 1-magnon dispersion relation. Note that the value u =

1
2 makes sense

as the location of the quantum plane limit on the rapidity torus, being equal to one of the
half-periods of the elliptic functions describing it. For the careful reader we note that for
rational models, the quantum plane arises at u ! 1, however that is because the torus has
been decompactified by sending the periods to infinity.

Being triangular, the R-matrix can also be factorised as

R = F21F
�1
12 = (F12)

�2 . (3.19)

with the twist being given by

F =

0

BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 ↵ � 0 0 0 0 0

0 �� ↵ 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 ↵ �� 0

0 0 0 0 0 � ↵ 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCA

with:
↵ =

+1p
2
p
1+2 ,

� =
�1p

2
p
1+2

(3.20)

We note that the twist is triangular, i.e. F21 = F�1
12 , is orthogonal as an 8 ⇥ 8 matrix

and has unit determinant. From this twist, taking appropriate care when working with our
truncated tensor product on the three-site basis, one can obtain a coassociator with which
the R-matrix (3.18) satisfies the quasi-Hopf YBE (3.3).

– 15 –

choice c = 2
1+2 . Explicitly, the R-matrix R = PR̂ reads

R =

0

BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0
2

2+1 �
2�1
2+1 0 0 0 0 0

0
2�1
2+1

2
2+1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0
2

2+1
2�1
2+1 0

0 0 0 0 0 �
2�1
2+1

2
2+1 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 k k0 0 0 0 0 0

0 �k0 k 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 k �k0 0

0 0 0 0 0 k0 k 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCA

(3.18)

written in the same basis as (2.10), which we identify with the two-site basis xixj in (3.4).
This R-matrix does not satisfy the usual YBE, apart from the special cases  = ±1, 0. The
R-matrix (3.18) can be seen to reduce to I � I in the  ! 1 limit, as expected.

It is very intriguing to observe that (3.18) is the direct sum of two Felder SU(2) dy-
namical R-matrices, as presented in (4.8), for the special parameter values � = (1 + ⌧)/2,
⌘ = ±⌧/4 and with the rapidity fixed to u =

1
2 . The choices ⌘ = ±⌧/4 are for the upper and

lower block respectively. For these values, the coefficients of the R-matrix (4.8), normalised
by dividing out by �, reduce to the elliptic modulus k and its complement k0 =

p
1� k

related to the modular parameter m̃ = 42/(1+2)2 which, as we will see in Section 7, can
be read off from the 1-magnon dispersion relation. Note that the value u =

1
2 makes sense

as the location of the quantum plane limit on the rapidity torus, being equal to one of the
half-periods of the elliptic functions describing it. For the careful reader we note that for
rational models, the quantum plane arises at u ! 1, however that is because the torus has
been decompactified by sending the periods to infinity.

Being triangular, the R-matrix can also be factorised as

R = F21F
�1
12 = (F12)

�2 . (3.19)

with the twist being given by

F =

0

BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 ↵ � 0 0 0 0 0

0 �� ↵ 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 ↵ �� 0

0 0 0 0 0 � ↵ 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCA

with:
↵ =

+1p
2
p
1+2 ,

� =
�1p

2
p
1+2

(3.20)

We note that the twist is triangular, i.e. F21 = F�1
12 , is orthogonal as an 8 ⇥ 8 matrix

and has unit determinant. From this twist, taking appropriate care when working with our
truncated tensor product on the three-site basis, one can obtain a coassociator with which
the R-matrix (3.18) satisfies the quasi-Hopf YBE (3.3).

– 15 –

The Rtt relations define the 
quantum group

Let us now consider the symmetries of the XZ quantum plane, which in the undeformed
theory are just an SU(2) rotating X with Z. This SU(2) is broken after the orbifold and the
marginal deformation. However, from the above discussion we see that it will get uplifted
to an SU(2) quantum group defined by the RTT relations [50] with the R-matrix (3.18):

Ri j
k l T

k
m T l

n = T j
l T

i
k R

k l
m n . (3.21)

Of course, given an arbitrary matrix R, the RTT relations by themselves are not sufficient
to define a consistent quantum group. In particular, the consistency of the higher order
relations in the generators requires the YBE relation for R. Otherwise, requiring asso-
ciativity can trivialise the relations. However, since our R-matrix is triangular and can be
factorised via a Drinfeld twist, one can abandon associativity in a consistent way by working
in a quasi-Hopf setting, as was done in [45]. In such a setting, the action of the deformed
generators on the quantum plane can be related to that of the undeformed ones using the
twist, and the quantum algebra can be consistently defined (at the price of introducing a
coassociator as in (3.2) which complicates the formalism somewhat.)

We thus see that, even though the orbifold and the marginal deformation superficially
break part of the PSU(2, 2|4) global symmetry group of N = 4 SYM, the broken generators
are not really broken when one is willing to work in a quasi-Hopf setting. They are rather
-deformed and should still be able to provide useful constraints on the theory. We will
leave a more detailed study of the quantum group underlying the XZ sector, as well as its
generalisation to SU(3) and the full scalar sector, for future work.

The main complication in our setting, compared to the N = 1 theories studied in [45],
is the non-direct product nature of our state space, i.e. the fact that some combinations of
the fields are not allowed due to the incompatibility of the gauge indices. One would thus
need to work in a truncated state space which makes the construction less immediate. Work
towards elucidating this structure is in progress. For the present work, we desire to avoid
this issue and that is one of our motivations for introducing what we call the dynamical
notation in the next section.

Concluding this section we wish to emphasise the following points. Firstly our results
in this section hold purely in the quantum plane limit. We only obtained the R-matrix
R(u⇤;) in a special limit for the spectral parameter u ! u⇤. 15 To completely describe
our model and attempt to solve it with the Algebraic Bethe ansatz approach we need to first
obtain the R-matrix as a function of the spectral parameter R(u;). In the conclusions we
will comment on how one could go about doing that. To fully understand the quasi-Hopf
structure, it is also imperative to compute the coassociator, which will enable us to write
down and check the quasi-Hopf YBE (3.3). Secondly, in order for a quantum system with

15In rational or trigonometric integrable systems, where the R-matrix is known as a function of the
spectral parameter, one can obtain the quantum plane limit by taking the spectral parameter to infinity. In
elliptic models the dependence on the spectral parameter is such that the quantum plane limit corresponds
to taking the spectral parameter to be equal one of the half-periods of the elliptic functions. Since the
trigonometric and rational cases are reached by taking one or both (respectively) periods of the elliptic
functions to infinity (thus decompactifying the rapidity torus in one or both directions) this leads to the
statement above.
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A quasi-Hopf symmetry algebra

The Z2 quiver quantum group  
XY sector the R∝1: the SU(2) that rotates X and Y is unbroken (indeed true)

XZ nontrivial R: the SU(2) that rotates X and Z is broken (upgraded to quantum)

For the XZ sector there is a twist:



The Z2 quiver has extra symmetry  

 We can do this both in an N=2 and in an N=4 (dynamical) language.

We have the action of the generators of the SU(3)κ on fields in both 
languages as well as the co-product and we are currently working out 
the action of the full supergroup PSU(2,2|4)κ!

The superpotential is invariant under a quantum SU(3)κ symmetry, 
with the appropriate co-product

[2111.xxxxx Andriolo,Bertle,,EP,Zhang,Zoubos]

The XZ SU(2) (as well as YZ SU(2)) inside the SU(3) are quantum.



Conjecture 

 The N<4 theories which can be obtained via orbifolding, 
orientifolding, … the mother N=4 SYM theory, enjoy a 
quantum deformation of PSU(2,2|4).

 The naively broken generators of PSU(2,2|4) → SU(2,2|N ) 
get upgraded to quantum generators.

… any susy breaking that is due to R-symmetry breaking.



A 15-Vertex 
model for the 
SU(3) sector



Vertex models
 The 6-vertex model : XXZ (trigonometric)

 The 8-vertex model : XYZ (elliptic)

 How Baxter solved the 8-vertex model (XYZ): he did a local 
change of basis and made the R-matrix of the 8-vertex to look like 
the R-matrix of the 6-vertex model (locally).



Elliptic algebras
 The vertex-type elliptic algebras: Baxter-Belavin R-matrix 

obeys YBE.

 The face-type elliptic algebras: R-matrix of Andrews, Baxter, 

Forrester. Felder showed that they obey a dynamical YBE (DYBE).

 The two algebras are related by a twist.


 The first does not have a highest weight state the second one does (this is why we 
need the second one)!

[q-alg/9712029Jimbo,Konno,Odake,Shiraishi]



Andrews Baxter Forrester

quasi-Hopf symmetry to be integrable, the Drinfeld twist F needs to obey a specific cocycle
condition. In particular, as reviewed in the next section, if F satisfies a shifted cocycle
condition [27–29] the corresponding R-matrix would satisfy the dynamical YBE. This is
something we have not attempted to check in this current work. We hope to be able to
report progress in this direction in a forthcoming paper.

4 The dynamical spin chain

Even though we do not (yet) have a spectral-parameter-dependent matrix R(u;), we can
still try to identify the main features it would need to have in order to reproduce our
Hamiltonian. For this we find it useful to introduce the notion of a dynamical parameter,
which we will denote by �. Apart from the fact that a dynamical description of our model
will be much more elegant, it also plays an important role in the theory of elliptic quantum
groups as introduced by Felder [23, 68]. To understand the origins of this parameter, let
us briefly review an important class of statistical mechanical models, the Solid-On-Solid
(SOS) models [69]. For more details, we refer the reader to e.g. the review [70] or the book
[16].

A SOS model is a statistical model defined by a set of Boltzmann face weights, depicted
graphically as:

a b

cd
u = W

 
d c

a b

���u
!

(4.1)

The parameter u is the rapidity or spectral parameter, and a, b, c, d are known as the heights.
Here we are thinking of a square lattice with the weights associated to each unit face of the
lattice, and their value determined by the heights associated with the four lattice points
surrounding each face. Each model comes with a set of rules as to which heights are allowed
to be adjacent. For instance, in the original Andrews-Baxter-Forrester (ABF) model [69]
neighbouring heights can only differ by 1, i.e. we impose |a� b| = 1 and similarly for |b� c|
etc.. To give a concrete example, let us write down the weights for this case, in symmetrised
form

W

✓
a a+ 1

a+ 1 a+ 2

���u
◆

= W

✓
a a� 1

a� 1 a� 2

���u
◆

=
✓1(2⌘ � u)

✓1(2⌘)

W

✓
a a+ 1

a� 1 a

���u
◆

= W

✓
a a� 1

a+ 1 a

���u
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=

p
✓1(2⌘(a� 1) + w0)✓1(2⌘(a+ 1) + w0)

✓1(2⌘a+ w0)

✓1(u)

✓1(2⌘)

W

✓
a a+ 1

a+ 1 a

���u
◆

=
✓1(2⌘a+ w0 + u)

✓1(2⌘a+ w0)
, W

✓
a a� 1

a� 1 a

���u
◆

=
✓1(2⌘a+ w0 � u)

✓1(2⌘a+ w0)

(4.2)

We use the theta-function conventions of [71] which are also compatible e.g. with [72].
The parameter ⌘ is the deformation (or “crossing”) parameter which appears in Baxter’s
elliptic R-matrix for the XYZ model, and w0 is a tunable constant. Note that neighbouring
heights indeed only differ by ±1. (The weights for all other possibilities are set to zero).
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The above weights satisfy the star-triangle relation
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(4.3)
which can be graphically represented as follows:
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z
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z

(4.4)

The height g is summed over all the values allowed by the ±1 restriction and of course
the equation is only non-trivial if the adjacent external heights also only differ by ±1.

The dynamical R-matrix
For many applications, including to quantum groups, it is useful to have a description

of the model as a vertex model with an R-matrix. For the ABF model, such a map was
introduced by Felder [23, 68]. As we are in an SU(2) setting we can define a 2-dimensional
basis as

e[1] =

 
1

0

!
, e[�1] =

 
0

1

!
(4.5)

and construct an R-matrix Rij
kl on the product space V ⌦ V as

R(u;�2⌘d)e[c� d]⌦ e[b� c] =
X

a

W

 
d c

a b

���u
!
e[b� a]⌦ e[a� d] . (4.6)

Graphically, we can represent this relation as

a

b

c

d =

k l

i j

� (4.7)

Note that the R-matrix depends on the height d, which is not fixed at a given site but
dynamically determined by the configuration. We will call the combination �2⌘d�w0 = �,
where � is known as the dynamical parameter. Performing this vertex-face map, we find
the R-matrix

R(u;�) =

0

BBB@

� 0 0 0

0 ↵ �+ 0

0 �� ↵ 0

0 0 0 �

1

CCCA
, (4.8)
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SOS models: statistical (square lattice) models defined by a set of Boltzmann face weights 

u: rapidity   a, b, c, d: the heights 

ABF model: neighbouring 
heights can only differ by 1.

Each model comes with a set of rules as to which heights are allowed to be adjacent.

η: Baxter’s RXYZ

Integrability is captured by the star-triangle relation:



Felder’s R-matrix

The above weights satisfy the star-triangle relation
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The height g is summed over all the values allowed by the ±1 restriction and of course
the equation is only non-trivial if the adjacent external heights also only differ by ±1.

The dynamical R-matrix
For many applications, including to quantum groups, it is useful to have a description

of the model as a vertex model with an R-matrix. For the ABF model, such a map was
introduced by Felder [23, 68]. As we are in an SU(2) setting we can define a 2-dimensional
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Note that the R-matrix depends on the height d, which is not fixed at a given site but
dynamically determined by the configuration. We will call the combination �2⌘d�w0 = �,
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This is Felder’s dynamical R-matrix [23, 68], which has found extensive applications in the
study of elliptic quantum groups.16 It should be clear from the construction that this R-
matrix cannot satisfy the usual Yang-Baxter equation, since the weights in the star-triangle
relation depended on the value of the heights, and in particular two adjacent weights will
have different heights. Instead, as shown in [23, 68], this R-matrix satisfies the dynamical
Yang-Baxter equation :

R12(u1 � u2;�+ 2⌘h(3))R13(u1 � u3;�)R23(u2 � u3;�+ 2⌘h(1))

=R23(u2 � u3;�)R13(u1 � u3;�+ 2⌘h(2))R12(u1 � u2;�)
(4.10)

We see that the spectral parameter is shifted in consecutive R-matrices. The shift is propor-
tional to 2⌘, which is known as the step and h(i) indicates the Cartan weight of each index
line being crossed. In our SU(2) example these weights are ±1, depending on whether one
crosses e[1] or e[2], so the shifts will be by ±2⌘. The dYBE can be represented graphically
as follows:
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where �0
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h(i). Here we use the convention that (a) an

R-matrix takes the value of the � parameter to its left (as determined by the arrows) and
(b) the dynamical parameter is shifted with positive step as one crosses an index line from

16However, as mentioned, we have performed a gauge transformation which has brought the ↵ coefficients
into symmetrised form [73].
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Felder’s R-matrix = ABF R-matrix 
after using the vertex-face map: 


The R-matrix of Felder obeys a dynamical YBE (DYBE) η: Baxter’s RXYZ

Important: the quasi-Hopf YBE becomes the DYBE when the twist satisfies a so-
called shifted cocycle relation. 
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Ri j
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So in the dynamical YBE, on the left R12 and R23 “see” the dynamical parameter � while
R13 sees �+2⌘h(2), while on the right R13 sees � while R23,R12 see �+2⌘h(1) and �+2⌘h(3),
respectively. This explains the shifts appearing in (4.10).

A very similar notation was also used recently in [74] following earlier work [75, 76].
In these works, features of elliptic models, such as the transfer matrices, are mapped to
surface defects in N = 1 quiver theories, which, conversely, provide a construction of elliptic
integrable models via branes. The setting of [74–76] is very different from ours. They study
supersymmetric indices (which are partition functions on S3 ⇥ S1 and count BPS objects)
in the presence of surface defects. Our study aims to compute anomalous dimensions of
non-BPS single-trace local operators in the planar limit. Nonetheless, these works add to
the conclusion that elliptic models have an important role to play in supersymmetric gauge
theory.

Although clearly the dYBE does not define a completely new structure, as it is implied
by the star-triangle relations of the corresponding SOS models, it brings with it several
advantages, in particular if one is interested in more algebraic aspects. As mentioned, it
allows for the definition of elliptic quantum groups. Also, and importantly for our purposes,
it has been shown to be a special case of the quasi-Hopf YBE (3.3), which arises when the
twist from an initial Hopf algebra satisfies a so-called shifted cocycle relation [27, 29]. In this
case the coassociator simplifies considerably as compared to the general case. As already
discussed in Section 3.1, our system has a quasi-Hopf symmetry in the quantum plane limit,
and it will be important to establish (possibly by a quasi-Hopf version of Baxterisation [77])
whether this quasi-Hopf symmetry also holds away from that limit, i.e. in the presence of a
spectral parameter. Although that would be important by itself, for practical applications
it would be very desirable to bring the model into the dynamical framework above.

Another motivation for Felder’s R-matrix (4.8) is that it is equivalent to Baxter’s
elliptic R-matrix for the 8-vertex model/XYZ model [15], however it is of 6-vertex form,
a feature typically associated with trigonometric models such as XXZ. Unlike the 8-vertex
form, this allows for the definition of highest-weight states, which is a prerequisite for the
application of the Algebraic Bethe Ansatz. Recall that Baxter, in his solution of the 8-
vertex model, tackled this problem via a famous site-dependent change of basis, which
locally brought the R-matrix into 6-vertex form. In the ABA context, this was used in
[78] for the diagonalisation of the XYZ Heisenberg chain. One can think of Felder’s matrix
as already being in the 6-vertex basis, making the application of the ABA straightforward
[24, 73], with the main difference to the usual case being the need to keep track of the
dynamical parameter in the transfer matrix.
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The R-matrix of Felder is a function of the dynamical parameter λ which is shifted by 2η 
when we cross an index line


Having the dynamical parameter to always be shifted by 2η is not good for our purpose!
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This is Felder’s dynamical R-matrix [23, 68], which has found extensive applications in the
study of elliptic quantum groups.16 It should be clear from the construction that this R-
matrix cannot satisfy the usual Yang-Baxter equation, since the weights in the star-triangle
relation depended on the value of the heights, and in particular two adjacent weights will
have different heights. Instead, as shown in [23, 68], this R-matrix satisfies the dynamical
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(4.10)
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where �0
= � + 2⌘h(2) and �00

= � + 2⌘
P

i=1,3
h(i). Here we use the convention that (a) an

R-matrix takes the value of the � parameter to its left (as determined by the arrows) and
(b) the dynamical parameter is shifted with positive step as one crosses an index line from

16However, as mentioned, we have performed a gauge transformation which has brought the ↵ coefficients
into symmetrised form [73].
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Dilute RSOS/CSOS models
namical framework, these features, in particular degenerate eigenvectors and roots forming
complete N -strings, are discussed in [73].

Dilute RSOS models
Let us now turn to a special class of RSOS models, the dilute RSOS models [88–

94]. These are models where adjacent heights are allowed to also take equal values, i.e.
one modifies the adjacency condition to |a � b|  1 (and similarly for (b, c) etc). One can
consider this as allowing paths from a given node that loop back to the same node (although
this is not often indicated in the notation). This means that on top of the weights of ABF
type (4.2) there will now exist Boltzmann weights of type
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The name “dilute” comes through the link to loop models: Following [91], one can represent
the ABF Boltzmann weights in terms of the following two tiles:
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���u
!

=

a
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c

d u = + (4.14)

The lines on the tiles indicate domain walls separating different heights. Thus for the first
tile we have a = c and for the second b = d, and one can check that the ABF weights (4.2)
fall under one of the two cases.17 If one now considers a two-dimensional lattice model with
the two tiles above as building blocks, there will be regions of different height separated by
domain walls. Each edge of the dual lattice will be part of a domain wall. Thus the ABF
model is called dense. On the other hand, the dilute Boltzmann weights above include the
two ABF tiles but also tiles with one or no lines. The most general choice leads to the
following set of 9 tiles:

(

, , , , , , , ,

)

.

(4.15)
See [85, 96] for recent discussions of the dilute loop models based on the tiles above and
more details on their relations to the RSOS and vertex models.

After this rather lengthy review, let us now explain the relevance of RSOS models and
the dynamical framework to the SU(3) sector of the spin chains arising from our quiver
gauge theories, as discussed in 2. More specifically, in the next section we will argue that
one can obtain important insights about our Hamiltonians by considering the underlying

17The relation is not 1–1, as there are weights where both a = c and b = d. A notation for the tiles which
makes them match the weights more precisely was used e.g. in [95].
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Having the dynamical parameter to always be shifted by 2η is not good for our purpose!


When we cross a Z (field in the adjoint representation) we don’t want to shift λ!


The dynamical parameter λ will keep track of the color group!


To achieve that we need to study dilute RSOS/CSOS models.


The name dilute comes from the link to loop models.


ABF is a dense or fully packed face model (neighbouring heights can differ by 1)

We need to also have the dilute tiles:

Boltzmann face weights can have neighbouring heights differing by 1 or being equal!
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SU(3) sector as a 15-vertex model
Assume there is a vertex model, whose R-matrix

vertex model as a dynamical vertex model (one where the couplings depend on the value
of a dynamical parameter, as is the case for Felder’s R-matrix), and that this vertex model
can be mapped, at the level of the adjacency graph, to a dilute RSOS (or, more specifically,
a CSOS) model. We do not address the question of whether suitable Boltzmann weights
exist that realise this adjacency graph, but specifying the required features will provide
important input in the search for such weights.

4.1 The SU(3) sector as a dynamical 15-vertex model

Let us summarise the main features of the one-loop spin chains coming from the holomorphic
scalar sector of the marginally deformed Z2 quiver theory. We saw that the three SU(2)

sectors of the orbifold point look rather different after the deformation. In the XY sector
we obtain an alternating ferromagnetic Heisenberg spin chain, where the coupling is either
 or 1/ depending on whether the Hamiltonian is acting on even-odd or odd-even sites.
These types of spin chains have been studied in the literature (e.g. [62, 63], see also section
5 for more references). However, the spin chain in the XZ (and equivalent Y Z) sector is of
a rather different type. Since the Z field does not alter the node of the quiver, Z insertions
on the spin chain do not change the gauge coupling. In the language of the spin chain,
crossing a Z field does not change the Hamiltonian. We will now explain why this makes
this sector dilute, where we use the term by analogy with the dilute RSOS models [92],
which we briefly reviewed above.

Following the intuition we have gained from the above discussion of the relation between
dynamical spin chains and RSOS models, we will now describe why our spin chains coming
from the Z2 quiver theory should be understood as dynamical. Let us assume that a vertex
model exists, whose R-matrix R(u;) ⌘ R(u;�) produces the Hamiltonian of our spin chain
in the SU(3) sector. This R-matrix should depend on the ratio of the gauge couplings, which
we have denoted . When crossing one of the bifundamental fields,  becomes exchanged
with 1/. In the dynamical spin chain language, crossing these bifundamental fields should
take � ! � ± 2⌘. Thus, if (� ± 2⌘) = 1/(�), the model has precisely the behaviour we
require.

R(u;) ⌘ R(u;�) , R(u;�1
) ⌘ R(u;�± 2⌘) (4.16)

What is more, our model is such that crossing two bifundamentals is equivalent to returning
to the original coupling constant (and thus dynamical parameter �). So one needs that
�± 4⌘ ⇠ �, implying that the R-matrix must have this periodicity

R(u;�) = R(u;�± 4⌘) . (4.17)

If we now assume that there exist a vertex model with this R-matrix, we can map it to an
RSOS model which is necessarily cyclic (CSOS).

Furthermore, considering that crossing an adjoint Z field does not alter the gauge
group, the R-matrix should be such that � does not change when crossing a Z field. In
RSOS model language, this means that we should allow adjacent heights to be equal, and
this means that the model is dilute, as reviewed above. All in all, in Figure 5 we summarise
what the properties of all the components of the yet unknown R-matrix R(u;�) should be
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Crossing a bifundamental field Q: κ → 1/κ 
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can be mapped, at the level of the adjacency graph, to a dilute RSOS (or, more specifically,
a CSOS) model. We do not address the question of whether suitable Boltzmann weights
exist that realise this adjacency graph, but specifying the required features will provide
important input in the search for such weights.
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sectors of the orbifold point look rather different after the deformation. In the XY sector
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Crossing an adjoint Z field does not alter the gauge group and thus the dynamical 

parameter λ, thus the model is dilute.

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction
of the arrows. For instance, Q12 transforms in the fundamental of gauge group 1 and the
antifundamental of gauge group 2 (⇤1 ⇥⇤2). (⇤2 ⇥⇤1).

H() /
d

du
R(u;)|u=0 (2.5)

We already wish to indicate that we have the choice of working in the daughter N = 2

SCFT picture (with our single letter basis composed of the six fields �i and Qij , Q̃ij) or in
the mother N = 4 SYM picture where the single site basis is made out of X,Y, Z . We
will mostly use the latter as it allows us to simplify the discussion. As we will see, the
information of whether we are working with the upper or lower component of a given field
in the N = 4 picture will be provided by a dynamical parameter �.

2.2 The Hamiltonian

In this paper we will focus on the one-loop holomorphic SU(3) sector of the Z2 quiver. In
the mother N = 4 SYM this sector is made up of three complex scalar fields X,Y, Z in
the adjoint of the SU(2N) gauge group. The planar Hamiltonian of this theory has been
derived, for the full scalar sector, in [7]. We begin by visually rederiving the Hamiltonian
in two SU(2)-like sectors, the one formed by the fields X and Y and the one formed by X

and Z, so that we can highlight the difference between these sectors.

The XY sector
This is the sector which includes all the (holomorphic) bifundamental fields. To derive

the Hamiltonian, let us start by considering the �i F-terms:

F�1 = ig1(Q12
eQ21 �

eQ12Q21) , F�2 = ig2(Q21
eQ12 �

eQ21Q12) (2.6)

From the potential FF̄ , following the treatment in e.g. [43], we can immediately draw the
vertices contributing to the one-loop Hamiltonian. These are shown in Figure 2.

After taking out an overall factor of g1g2 and defining  = g2/g1, we find the Hamilto-
nian:

H`,`+1 =

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 �1
��1

0 0 0 0 0

0 ��1 �1
0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0  � 0

0 0 0 0 0 �  0

0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, in the basis

0

BBBBBBBBBBBB@

Q12Q21

Q12Q̃21

Q̃12Q21

Q̃12Q̃21

Q21Q12

Q21Q̃12

Q̃21Q12

Q̃21Q̃12

1

CCCCCCCCCCCCA

, (2.7)

where the indices `, ` + 1 denote the nearest neighbour sites of the spin chain. Note that
the basis is 8-dimensional instead of 16-dimensional as one would expect given our four

– 7 –

left to right (again as determined by the arrow). In pictures:

Ri j
k l(u;�) =

k l

i j

�(a) (b) i
�

�+ 2⌘hi
(4.12)

So in the dynamical YBE, on the left R12 and R23 “see” the dynamical parameter � while
R13 sees �+2⌘h(2), while on the right R13 sees � while R23,R12 see �+2⌘h(1) and �+2⌘h(3),
respectively. This explains the shifts appearing in (4.10).

A very similar notation was also used recently in [74] following earlier work [75, 76].
In these works, features of elliptic models, such as the transfer matrices, are mapped to
surface defects in N = 1 quiver theories, which, conversely, provide a construction of elliptic
integrable models via branes. The setting of [74–76] is very different from ours. They study
supersymmetric indices (which are partition functions on S3 ⇥ S1 and count BPS objects)
in the presence of surface defects. Our study aims to compute anomalous dimensions of
non-BPS single-trace local operators in the planar limit. Nonetheless, these works add to
the conclusion that elliptic models have an important role to play in supersymmetric gauge
theory.

Although clearly the dYBE does not define a completely new structure, as it is implied
by the star-triangle relations of the corresponding SOS models, it brings with it several
advantages, in particular if one is interested in more algebraic aspects. As mentioned, it
allows for the definition of elliptic quantum groups. Also, and importantly for our purposes,
it has been shown to be a special case of the quasi-Hopf YBE (3.3), which arises when the
twist from an initial Hopf algebra satisfies a so-called shifted cocycle relation [27, 29]. In this
case the coassociator simplifies considerably as compared to the general case. As already
discussed in Section 3.1, our system has a quasi-Hopf symmetry in the quantum plane limit,
and it will be important to establish (possibly by a quasi-Hopf version of Baxterisation [77])
whether this quasi-Hopf symmetry also holds away from that limit, i.e. in the presence of a
spectral parameter. Although that would be important by itself, for practical applications
it would be very desirable to bring the model into the dynamical framework above.

Another motivation for Felder’s R-matrix (4.8) is that it is equivalent to Baxter’s
elliptic R-matrix for the 8-vertex model/XYZ model [15], however it is of 6-vertex form,
a feature typically associated with trigonometric models such as XXZ. Unlike the 8-vertex
form, this allows for the definition of highest-weight states, which is a prerequisite for the
application of the Algebraic Bethe Ansatz. Recall that Baxter, in his solution of the 8-
vertex model, tackled this problem via a famous site-dependent change of basis, which
locally brought the R-matrix into 6-vertex form. In the ABA context, this was used in
[78] for the diagonalisation of the XYZ Heisenberg chain. One can think of Felder’s matrix
as already being in the 6-vertex basis, making the application of the ABA straightforward
[24, 73], with the main difference to the usual case being the need to keep track of the
dynamical parameter in the transfer matrix.
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SU(3) sector as a 15-vertex model
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Figure 5. The identification of the Boltzmann face weights of a dilute A(1)
2 -type model with those

of a dynamical 15-vertex model. For the specific Z2 quiver theory we are studying, the functional
dependence of the weights on d should be such that d±2 ⇠ d, or in terms of the R-matrix �±4⌘ ⇠ �.

with respect to how � shifts across each field. In the language of vertex models we draw all
the vertices of the SU(3) sector of the Z2 quiver theory vertex model and explicitly draw
their � dependence.

Moreover, in Figure 5 we show how our vertex model (which should produce our R-
matrix R(u;�)) can be put in correspondence with the Boltzmann weights of a dilute RSOS
model (and thus also a dilute loop model as discussed above). Working in the X,Y, Z basis,
this identification is the unique one which respects the above periodicity and adjacency
requirements as well as all the other symmetries of the problem.

Note that we have ordered the vertices so that they match the ordering in (4.15). In
particular, the first 6 vertices (and corresponding Boltzmann weights) match with the first
two “dense” model tiles (which can easily be seen to form a closed sector). In our model
these would be the R-matrix components leading to the Hamiltonian of the XY sector.
Therefore, in the following we will call the XY SU(2) sub-sector dense. The remaining
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15-vertex models for N=2 SCFTs

X Y

Z�

�

�

Figure 6. The adjacency graph of the N = 4 theory seen as a (trivial) RSOS model. All vertices
are identified. Here all fields are in the adjoint of the (single) gauge group and the model is not
dynamical.

X
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XY Y

Y

Z Z

Z

�

�0

�

� �
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Figure 7. The adjacency diagram of the dilute RSOS model associated to the Z2 quiver theory, in
the dynamical N = 4-like picture. Vertices of the same colour/height � are identified. This is the
dual graph to the brane-tiling diagram of the quiver theory.

six fields �1,�2, Q12, Q21, Q̃12, Q̃21) the adjacency diagram is precisely our quiver depicted
in Figure 1. This is because we can only make single trace operators (which correspond to
the spin chain states) following the arrows of the quiver. In the dynamical N = 4 language
(where we have a 15-vertex model and the three fields X,Y, Z) we keep track of the gauge
groups by explicitly denoting a blob in the quiver by its corresponding dynamical parameter
�. In a picture more typical in the RSOS literature, the same quiver/adjacency diagram can
be drawn as in Figure 7. For comparison, in Figure 6 we show the corresponding adjacency
diagram for the N = 4 SYM theory. For N = 4 SYM the adjacency graph is a single
triangle with the dynamical parameter � being the same at all the nodes. It is interesting
to note that for both examples in the language of brane tiling [55–58] the adjacency graph
is the dual graph to the bipartite graph describing the quiver theory.

To help clarify how the dynamical parameter, together with an appropriate choice of
step, can lead to an alternating chain, in appendix C we show how to obtain an alternating
XX model from Felder’s dynamical R-matrix by choosing 2⌘ = ⌧/2, with ⌧ the imaginary
period of the theta functions in the R-matrix. This is a dense-type model which is quite
similar to our XY sector, however, being a free-fermion-type model, it fails to capture the
contribution of the �z ⌦ �z terms which are required for our XXX-type Hamiltonian.20

20We hope that no confusion will arise between our use of XY and XZ for the different SU(2) sectors of
the gauge theory, and specific spin-chain models like XXX or XX.
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The SU(3) sector of the Z3 quiver will also be described by a dynamical 15-vertex model,
but in this case with three dynamical parameters �1,�2,�3. The corresponding adjacency
graph is depicted in Figure 14. Note that as discussed in Section 4 for the Z2 case, the
adjacency graph in Figure 14 is the dual graph of the bipartite graph of the Z3 quiver
theory [55–58]. What is more, the 15 vertices of the Z3 vertex model, will be the same as
the ones in Figure 5 for the Z2 case with the only essential difference that the periodicities
will change as � ⇠ �+ 6⌘.

X

X

X

X

X

XY Y

Y Y

Y

Y

Z Z

Z Z

Z

Z�1

�2

�3

�1

�3

�1 �1
�1

�2

�2

Figure 14. The adjacency diagram of the dilute RSOS model associated to the Z3 quiver theory,
in the dynamical N = 4-like picture. Vertices of the same colour/height � are identified. This is
the dual graph to the brane-tiling diagram of the quiver theory.

More generally, for any N = 2 ADE quiver the corresponding one magnon dispersion
relation is obtained as a solution of a higher order equation (enjoying the symmetry of the
quiver). These dispersion relations appear to be more naturally described by hyperelliptic
functions. This bring to mind the Chiral Potts model [15–19]. The study of these ADE
N = 2 spin chains is work in progress and we believe that due to their dilute nature, they
will have similar features to the off-critical ADE models of [92]. From the point of view
of the dynamical 15-vertex model, the most general ADE quiver has adjacency graph the
dual graph of its brane tiling. We finally wish to conjecture that a large class of N = 1

superconformal quiver theories can also be described by a dynamical vertex model coming
from an RSOS model with adjacency graph the dual graph of its brane tiling.

To conclude, we hope that we have convinced the reader that the spin chains arising in
the planar limit of N = 2 4d SCFTs deserve further study. The interplay between different
structures in mathematics like Elliptic quantum groups and quasi-Hopf algebras, statistical
mechanical models like dilute elliptic vertex and RSOS models, as well as alternating bond,
staggered models of interest to the condensed matter community (arising in known mate-
rials), with 4d gauge theory physics and string theory renders this research direction very
exciting. We plan to report on further progress in uncovering their underlying structures
in upcoming work.
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might help to eventually uncover.
We wish to emphasise, that, regardless of any integrable features, several important

features of the types of spin chains considered here can be studied. For instance, in [105] the
multi-magnon excitations have been studied using the recursion method [106]. Translating
the multi-magnon excitations of our chain to the language of gauge theory single trace local
operators, we can immediately acquire their anomalous dimensions, and then compare them
to explicit one-loop computations.

Yet an other interesting direction is to study this model from the string theory side.
The AdS string sigma-model was never considered nor constructed for marginally deformed
orbifold theories. We would need to start with type IIB string theory on AdS5 ⇥ S5/Z2,
adding the appropriate constant NS-NS B-fields in either Green-Schwarz, hybrid or pure-
spinor formalism. This AdS sigma model, and its AdS5 ⇥ S5/� generalization (with � 2

ADE), would also be relevant, independently of integrability, for many other currently
popular directions of research [122–129]. Intriguingly (at least for AdS/CFT practitioners),
RSOS lattice models are associated to (often non-unitary) minimal model CFTs in the
continuum limit [86, 130–132]. Their elliptic uplifts which are relevant for us are off-critical,
however, and one could then speculate about whether those off-critical models could capture
a specific closed subsector of the full string theory sigma model.

We finally wish to conclude with some remarks on orbifolds of higher rank. The elliptic

1

2

3

Q12

eQ21

Q23

eQ32

eQ13

Q31

�1

�2

�3

Figure 13. The Z3 quiver. The Q bifundamental fields (components of X in N = 4 language)
connect the nodes in a clockwise direction while the Q̃ bifundamental fields (components of Y in
N = 4 language) connect the nodes in an anticlockwise direction. The � adjoint fields (components
of Z in N = 4 language) return to the same node.

nature of the spin chains appears to be a somewhat special feature of the Z2 orbifold. Let us
consider, for instance, a Z3 orbifold of N = 4 SYM (see Figure 13), marginally deformed so
that all three gauge couplings g1, g2, g3 are all different. By a straightforward generalisation
of the discussion in Section 6, the dispersion relation of one Z excitation in the X vacuum
is obtained as a solution of the cubic equation:

E3
� 2E2

�
g21 + g22 + g23

�
+ 3E

�
g21g

2
2 + g21g

2
3 + g22g

2
3

�
+ 2g21g

2
2g

2
3 (cos(3p)� 1) = 0 . (8.2)
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Locally, this 15-vertex model capture the holomorphic SU(3) sector for any N=2 SCFT.


Only difference between different  N=2 SCFTs is the topology of the quiver and the “global 

periodicity”: how the dynamical parameter λ get’s shifted to capture the possibility for all 

different color groups of the quiver diagram and when it comes back to itself.


For the Z2 quiver                            For the Z3 quiver


The periodicity is captured by the adjacency graph.

1 2

Q12

Q21

eQ21

eQ12�1 �2

Figure 1. The Z2 quiver. The color groups are denoted by blobs representing the field content of
the N = 1 vector multiplets inside the N = 2 vector multiplets. We use N = 1 language for the
hypermultiplets. The arrow to the right is QÎ while the arrow to the left is Q̃Î .

To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N ⇥ 2N color matrices
in the mother N = 4 theory, which, in N = 1 language, contains three chiral superfields
X,Y, Z in the adjoint of the SU(2N) gauge group. The action of the Z2 is chosen such as to
preserve N = 2 supersymmetry, which means that it only acts on a |||C

2 of the |||C
3 transverse

space spanned by the three complex scalar fields. The orbifold procedure projects out some
N ⇥N blocks of these fields [32], so that after the projection they look like

X =

 
Q12

Q21

!
, Y =

 
Q̃12

Q̃21

!
, Z =

 
�1

�2

!
. (2.1)

where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows

QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =

⇣
Q̃21 , Q21

⌘T
. (2.2)

The superpotential is explicitly invariant under the extra SU(2)L rotating the doublets of
SU(2)L in (2.2) and can be written as

WZ2 = ig1 tr2
⇣
Q̃Î�1QÎ

⌘
� ig2 tr1

⇣
QÎ�2Q̃

Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.
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Figure 6. The adjacency graph of the N = 4 theory seen as a (trivial) RSOS model. All vertices
are identified. Here all fields are in the adjoint of the (single) gauge group and the model is not
dynamical.
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Figure 7. The adjacency diagram of the dilute RSOS model associated to the Z2 quiver theory, in
the dynamical N = 4-like picture. Vertices of the same colour/height � are identified. This is the
dual graph to the brane-tiling diagram of the quiver theory.

six fields �1,�2, Q12, Q21, Q̃12, Q̃21) the adjacency diagram is precisely our quiver depicted
in Figure 1. This is because we can only make single trace operators (which correspond to
the spin chain states) following the arrows of the quiver. In the dynamical N = 4 language
(where we have a 15-vertex model and the three fields X,Y, Z) we keep track of the gauge
groups by explicitly denoting a blob in the quiver by its corresponding dynamical parameter
�. In a picture more typical in the RSOS literature, the same quiver/adjacency diagram can
be drawn as in Figure 7. For comparison, in Figure 6 we show the corresponding adjacency
diagram for the N = 4 SYM theory. For N = 4 SYM the adjacency graph is a single
triangle with the dynamical parameter � being the same at all the nodes. It is interesting
to note that for both examples in the language of brane tiling [55–58] the adjacency graph
is the dual graph to the bipartite graph describing the quiver theory.

To help clarify how the dynamical parameter, together with an appropriate choice of
step, can lead to an alternating chain, in appendix C we show how to obtain an alternating
XX model from Felder’s dynamical R-matrix by choosing 2⌘ = ⌧/2, with ⌧ the imaginary
period of the theta functions in the R-matrix. This is a dense-type model which is quite
similar to our XY sector, however, being a free-fermion-type model, it fails to capture the
contribution of the �z ⌦ �z terms which are required for our XXX-type Hamiltonian.20

20We hope that no confusion will arise between our use of XY and XZ for the different SU(2) sectors of
the gauge theory, and specific spin-chain models like XXX or XX.
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vertex model as a dynamical vertex model (one where the couplings depend on the value
of a dynamical parameter, as is the case for Felder’s R-matrix), and that this vertex model
can be mapped, at the level of the adjacency graph, to a dilute RSOS (or, more specifically,
a CSOS) model. We do not address the question of whether suitable Boltzmann weights
exist that realise this adjacency graph, but specifying the required features will provide
important input in the search for such weights.

4.1 The SU(3) sector as a dynamical 15-vertex model

Let us summarise the main features of the one-loop spin chains coming from the holomorphic
scalar sector of the marginally deformed Z2 quiver theory. We saw that the three SU(2)

sectors of the orbifold point look rather different after the deformation. In the XY sector
we obtain an alternating ferromagnetic Heisenberg spin chain, where the coupling is either
 or 1/ depending on whether the Hamiltonian is acting on even-odd or odd-even sites.
These types of spin chains have been studied in the literature (e.g. [62, 63], see also section
5 for more references). However, the spin chain in the XZ (and equivalent Y Z) sector is of
a rather different type. Since the Z field does not alter the node of the quiver, Z insertions
on the spin chain do not change the gauge coupling. In the language of the spin chain,
crossing a Z field does not change the Hamiltonian. We will now explain why this makes
this sector dilute, where we use the term by analogy with the dilute RSOS models [92],
which we briefly reviewed above.

Following the intuition we have gained from the above discussion of the relation between
dynamical spin chains and RSOS models, we will now describe why our spin chains coming
from the Z2 quiver theory should be understood as dynamical. Let us assume that a vertex
model exists, whose R-matrix R(u;) ⌘ R(u;�) produces the Hamiltonian of our spin chain
in the SU(3) sector. This R-matrix should depend on the ratio of the gauge couplings, which
we have denoted . When crossing one of the bifundamental fields,  becomes exchanged
with 1/. In the dynamical spin chain language, crossing these bifundamental fields should
take � ! � ± 2⌘. Thus, if (� ± 2⌘) = 1/(�), the model has precisely the behaviour we
require.

R(u;) ⌘ R(u;�) , R(u;�1
) ⌘ R(u;�± 2⌘) (4.16)

What is more, our model is such that crossing two bifundamentals is equivalent to returning
to the original coupling constant (and thus dynamical parameter �). So one needs that
�± 4⌘ ⇠ �, implying that the R-matrix must have this periodicity

R(u;�) = R(u;�± 4⌘) . (4.17)

If we now assume that there exist a vertex model with this R-matrix, we can map it to an
RSOS model which is necessarily cyclic (CSOS).

Furthermore, considering that crossing an adjoint Z field does not alter the gauge
group, the R-matrix should be such that � does not change when crossing a Z field. In
RSOS model language, this means that we should allow adjacent heights to be equal, and
this means that the model is dilute, as reviewed above. All in all, in Figure 5 we summarise
what the properties of all the components of the yet unknown R-matrix R(u;�) should be
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�± 6⌘ ⇠ �

SXXZ() = �1�2eip1+e
i(p1+p2)

1�2eip2+ei(p1+p2)

S = SXXZ()

S̃ = SXXZ(
1

)

⇠ = ✏1 + ✏2

+ fermions

We introduce and study tetrahedron instantons, which can be realized in string theory

by D1-branes probing a configuration of intersecting D7-branes in flat spacetime with a

nonzero constant background B-field. Physically they capture instantons on C3 in the

presence of the most general intersecting codimention-two supersymmetric defects. More-

over, we construct the tetrahedron instantons as particular solutions of general instanton

equations in noncommutative field theory. We analyze the moduli space of tetrahedron

instantons and discuss the geometric interpretations. We compute the instanton partition

function both via the equivariant localization on the moduli space of tetrahedron instan-

tons and via the elliptic genus of the worldvolume theory on the D1-branes probing the

intersecting D7-branes, obtaining the same result. The instanton partition function of the

tetrahedron instantons lies between the higher-rank Donaldson-Thomas invariants on C3

and the partition function of the magnificent four model, which is conjectured to be the

mother of all instanton partition functions. Finally, we show that the instanton partition

function admits a free field representation.
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Conjectures 

 For every N=2 theory the holomorphic SU(3) sector can be 
captured by a dynamical 15-vertex model which is specified 
by the adjacency graph, which is the dual to the brane-tiling 
diagram of the quiver theory. 

 Similarly, for a large class of N=1 theories the holomorphic 
SU(3) sector will be captured by a dynamical 19-vertex 
model which is specified by the adjacency graph, which is 
the dual to the brane-tiling diagram of the quiver theory. 

A generic N=1 theory can have vertices: XY → ZZ and conjugates 

which an N=2 cannot due to R-symmetry!



Bethe Ansatz



Explicit Bethe Ansatz 
In                                              we studied the XZ sector around the “phi-vacuum”. 
The solution looked like two coupled trigonometric models, and the naive YBE 
was not satisfied.

[1006.0015 Gadde, EP, Rastelli]

The Q-vacuum

Here we attach the integrability problem in the simplest possible setting. We consider
excitations around a vacuum made out only of bifundamentals. In the Q-vacuum, as we
will see below, there will be no twisting! We discuss this in the next section. Expanding
around the Q-vacuum makes it simple to see integrability!

3 The “SU(2)” sector

In N = 2 superconformal gauge theories, there exists a scalar, closed to all-loops sub-
sector with � = 2R + r and j = j̄ = 0 that is made out of the color adjoints � and �̌
and the bifundamentals Q and Q̃. We will refers to it as the “SU(2)” sector, because
although it resembles a lot the SU(2) sector of N = 4, for N = 2 gauge theories there
is no SU(2) symmetry that rotates the di↵erent spices into each other.

The one-loop Hamiltonian in this sector is nearest neighbor type

H
SU(2)
`,`+1 =

0

BBBBBBBBBBBB@

�� QQ̃ �̌�̌ Q̃Q �Q Q�̌ �̌Q̃ Q̃�

�� 0 0 0 0 0 0 0 0
QQ̃ 0 0 0 0 0 0 0 0
�̌�̌ 0 0 0 0 0 0 0 0
Q̃Q 0 0 0 0 0 0 0 0
�Q 0 0 0 0 2 �2 0 0
Q�̌ 0 0 0 0 �2 22 0 0
�̌Q̃ 0 0 0 0 0 0 22 �2
Q̃� 0 0 0 0 0 0 �2 2

1

CCCCCCCCCCCCA

(4)

with  = ǧ

g
.

For N = 2 superconformal gauge theories, and within this sector, there are two
di↵erent BPS conditions that one could use to select a vacuum. One possibility is
� = 2R and corresponds to annihilating the chiral primary by half Q’s and half Q̄’s.
The other possibility is � = r and corresponds to chiral shortening.

The � = r choise corresponds to the �-vacua and leads to two inequivalent,
but degenerate |0i ⌘ tr

�
�`
�
and |0̌i ⌘ tr

�
�̌`
�
vacua. In the �-vacua there are two

inequivalent � � r = 1 excitations Q and Q̃ that interpolate between the two
di↵erent vacua

· · ·���Q �̌ �̌ �̌ · · · (5)

· · · �̌ �̌ �̌ Q̃��� · · ·

The two excitations have the same dispersion relation

g2E(p) = 2(g � ǧ)2 + 8 g ǧ sin2
⇣p
2

⌘
. (6)

At the two magnon level �� r = 2, there exist two di↵erent scattering matrices (for the
two di↵erent boundary conditions)

S for · · ·���Q �̌ �̌ �̌ · · · �̌ �̌ �̌ Q̃��� · · ·
S̃ for · · · �̌ �̌ �̌ Q̃��� · · ·���Q �̌ �̌ �̌ · · ·
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The Q-vacuum

that are not equal S 6= S̃ and this is why the naive YBE is not satisfied

S S̃ S 6= S̃ S S̃ (7)

N = 2 superconformal gauge theories where thought to be non-integrable because
already at the one-loop (as opposed to N = 4 SYM) the scattering matrix in scalar
sector [2] did not obey the usual YBE. But, the question of integrability is not so simple
to answer and it should be revisited by employing the twisted ZF algebra and twisted
YBE as we argued. This is work in progress. For now, we will limit ourselves to a
simpler approach that steams from the observation that if we study our theory around
the Q-vacuum, twisting will not be a problem.

4

Two phi vacua: One for each color group.

Magnons interpolate 
between the two vacua
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Two inequivalent two-
magnon scatterings

YBE not satisfied:

Revisit the explicit 3-body BA in the light of quasi-Hopf [Bozkurt, EP, Zoubos]



Explicit Bethe Ansatz 
Very different properties manifest when expand around an other vacuum, 
the “Q-vacuum”.

Even the one-magnon problem reveals novel features!

The dispersion relation is elliptic!

For two magnons we can find a solution on the center of mass frame 
using conventional Bethe Ansatz techniques (usual permutations plus 
nearest neighbour contact terms).

We will therefore take for our ansatz a superposition of a single Y excitation on odd and
even sites

|pi =
X

`22Z
 e(`)|`i+

X

`22Z+1

 o(`)|`i. (5.3)

This leads to the following equations:

�1
�
 e(2r)�  o(2r � 1)

�
+ 

�
 e(2r)�  o(2r + 1)

�
= E1(p) e(2r), (5.4)

and


�
 o(2s+ 1)�  e(2s)

�
+ �1

�
 o(2s+ 1)�  e(2s+ 2)

�
= E1(p) o(2s+ 1) , (5.5)

which can be solved easily by the Bethe-type ansatz

 e(`) = Ae(p)e
ip`,  o(`) = Ao(p)e

ip` , (5.6)

where the ratio between the even and odd amplitudes is fixed to be

r(p;) =
Ao(p)

Ae(p)
= ⌥

eip
p
1 + 2e�2ip

p
1 + 2e2ip

. (5.7)

The eigenvalue of the eigenvector (5.3) is

E1(p) = E1(p;) =
1


+ ±

1



q
(1 + 2)2 � 42 sin2 p . (5.8)

Similarly to [62, 63], we will call the negative branch of the square root the acoustic branch
and the positive one the optical branch. The acoustic branch is the one which includes the
zero-energy state E1(0) = 0. As can be seen in Figure 10, as  is tuned away from 1, a gap
of magnitude 2(1/ � ) develops between the branches at the boundary of the Brillouin
zone, which is at p = ⇡/2. Therefore, scattering states are confined either to the lower
(“acoustic”) or upper (“optical”) branch.

Note that by a choice of branch cut we can also bring the energy eigenvalue to the form

E1(p;) = +
1


±

1



p
1 + 2e�2ip

p
1 + 2e2ip . (5.9)

In this section we will choose to use the dispersion relation in this form. Some motivation for
this will be discussed in Section 7. Without loss of generality we will work with the acoustic
branch, however when considering specific solutions (such as in section 5.3) magnons be-
longing to both branches need to be considered (as well as solutions with complex momenta
which can lead to energies between the branches.)

We observe that the energy is even under reflection of the momentum, while the ratio
function is inverted:

E1(�p;) = E1(p;) , r(�p;) =
1

r(p;)
(5.10)

Similarly, the energy is invariant under the Z2 transformation  ! 1/, while the ratio is
again inverted:

E1(p; 1/) = E1(p;) , r(p; 1/) =
1

r(p;)
. (5.11)
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The Q-vacuum

4 The Q-vacuum

The Q-vacuum corresponds to the gauge theory operator

|Qi ⌘ tr
⇣
· · ·QQ̃QQ̃QQ̃QQ̃QQ̃ · · ·

⌘
. (8)

This vacuum is unique3, it is the spin chain state that corresponds to the unique BPS
operator with these quantum numbers � = 2R, as opposed to the �-vacua that are
degenerate and correspond to the BPS operators |0i ⌘ tr

�
�`
�
and |0̌i ⌘ tr

�
�̌`
�
with

� = r. Beginning with the degenerate �-vacua, we have two distinct magnon excitations
(3.2) and (4.1) is the maximally filled state. On the other hand, beginning with the
unique Q-vacuum, there is one unique magnon and the maximally filled states turn out
to be |0i and |0̌i. The unique single magnon excitation above the Q-vacuum takes the
form

|�(p)i ⌘
X

`

A(p)eip`|�`i+
X

`

B(p)eip`|�̌`i . (9)

As � travels in the Q-vacuum it turns into �̌ and then back to � and so on.

There is another important reason why one should choose to work with the Q-
vacuum. For the current work this motivations is irrelevant, but for going to all loops
will be precious. The choice of the Q-vacuum breaks the supergroup su(2, 2|2) down to

su(2, 2|2) �! s
⇣
u(2|1)� u(2|1)

⌘
= s

⇣
u(2↵|1)� u(2↵̇|1)

⌘
(10)

in contrast to the �-vacua that break

su(2, 2|2) �! su(2|2)� su(2) = su(2↵̇|2R)� su(2↵) (11)

The Q-vacuum breaks the bosonic SU(2)R while the �-vacua break the U(1)r. In the
�-vacua we can fix only the su(2↵̇|2R) scattering matrix to all loop orders while su(2↵)
remained unfixed, whereas in the Q-vacuum we can fix both su(2↵|1) and su(2↵̇|1).

5 Single magnon excitation

First, we check when (4.2) is an eigenstate of the Hamiltonian

H |�(p)i = (12)
X

`

⇥
4A(p)� 2B(p)

�
eip + e�ip

�⇤
eip`|�`i+

X

`

⇥
42B(p)� 2A(p)

�
eip + e�ip

�⇤
eip`|�̌`i

3
The statement that this vacuum is unique is not precise. There are (2`+ 1)

2
vacua, because each

Q
IÎ

and we make the state with “maximum” SU(2)R and SU(2)L quantum numbers. We pick one of

them. The one with I = + and Î = +̂.

5

The Q-vacuum

4 The Q-vacuum

The Q-vacuum corresponds to the gauge theory operator

|Qi ⌘ tr
⇣
· · ·QQ̃QQ̃QQ̃QQ̃QQ̃ · · ·

⌘
. (8)

This vacuum is unique3, it is the spin chain state that corresponds to the unique BPS
operator with these quantum numbers � = 2R, as opposed to the �-vacua that are
degenerate and correspond to the BPS operators |0i ⌘ tr

�
�`
�
and |0̌i ⌘ tr

�
�̌`
�
with

� = r. Beginning with the degenerate �-vacua, we have two distinct magnon excitations
(3.2) and (4.1) is the maximally filled state. On the other hand, beginning with the
unique Q-vacuum, there is one unique magnon and the maximally filled states turn out
to be |0i and |0̌i. The unique single magnon excitation above the Q-vacuum takes the
form

|�(p)i ⌘
X

`

A(p)eip`|�`i+
X

`

B(p)eip`|�̌`i . (9)

As � travels in the Q-vacuum it turns into �̌ and then back to � and so on.

There is another important reason why one should choose to work with the Q-
vacuum. For the current work this motivations is irrelevant, but for going to all loops
will be precious. The choice of the Q-vacuum breaks the supergroup su(2, 2|2) down to

su(2, 2|2) �! s
⇣
u(2|1)� u(2|1)

⌘
= s

⇣
u(2↵|1)� u(2↵̇|1)

⌘
(10)

in contrast to the �-vacua that break

su(2, 2|2) �! su(2|2)� su(2) = su(2↵̇|2R)� su(2↵) (11)

The Q-vacuum breaks the bosonic SU(2)R while the �-vacua break the U(1)r. In the
�-vacua we can fix only the su(2↵̇|2R) scattering matrix to all loop orders while su(2↵)
remained unfixed, whereas in the Q-vacuum we can fix both su(2↵|1) and su(2↵̇|1).

5 Single magnon excitation

First, we check when (4.2) is an eigenstate of the Hamiltonian

H |�(p)i = (12)
X

`

⇥
4A(p)� 2B(p)

�
eip + e�ip

�⇤
eip`|�`i+

X

`

⇥
42B(p)� 2A(p)

�
eip + e�ip

�⇤
eip`|�̌`i

3
The statement that this vacuum is unique is not precise. There are (2`+ 1)

2
vacua, because each

Q
IÎ
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Figure 1: Here we plot throne magnon Energy E(p) VS p for di↵erent values of . For

 = 1 we get the blue graph, for  = 0.8 is the purple ,  = 0.5 the yellow-green,  = 0.2
the green and for  = 0.0001 there is a one that in this scale it almost looks like lying

on the axis. So as  ! 0 E(p) ! 0 very fast.

This happens only when we are able to pull out a common function E(p) in front of
the two terms on the right-hand side of (5.1) such that H |�i = E(p)|�i. This common
function requirement leads to an equation for the ratio of the two amplitudes (wave
packets, kernels) A(p) and B(p)

E(p) = 4 � 2
B(p)

A(p)

�
eip + e�ip

�
= 42 � 2

A(p)

B(p)

�
eip + e�ip

�
(13)

that must be true for every value of the momentum

1 � 
B(p)

A(p)
cos p = 

2
� 

A(p)

B(p)
cos p ,

✓
B(p)

A(p)

◆2

 cos p+
�

2
� 1

� B(p)

A(p)
�  cos p = 0 (14)

and thus the ratio of the two kernels is constraint to be

r(p) ⌘ B(p)

A(p)
=

(1� 2)±
p

(1� 2)2 + 42 cos2 p

2 cos p
=

1� 2 ±
p
1 + 4 + 22 cos(2p)

2 cos p
(15)

This common function that we pull in front is the energy of a single magnon. When we
use the solution (5.4) with the plus

E(; p) = 4 � 4 r(p) cos p = 4� 2
⇣
(1� 2)�

p
(1� 2)2 + 42 cos2 p

⌘
(16)

or with the right hand side of (5.3)

E(; p) = 42 � 4
1

r(p)
cos p = 42

 
1� 2 cos2(p)

1� 2 +
p
1 + 4 + 22 cos(2p)

!
(17)

It is not obvious, but (refoneway) and (refsecondway) and can be brought in the useful
form

E(; p) = 2(1 + 2)� 2
q

(1 + 2)2 � 42 sin2 p (18)

For  = 0, the energy E(0; p) = 0 is zero this means that the “soliton” becomes massless.
It costs zero energy to make it. This is totally the opposite form the �-vacuum case where
E�(0; p) = 2.
For p = 0, the energy is zero E(; 0) = 0 which is good, because the operator to which
the singe symmetric magnon corresponds is protected! This is how I picked the plus
solution of (5.3) in the first place.
There is an other class of solutions where you pick the minus sign for the r(p) solution.
This is an other class of operators that are just not protected! In fact I know precisely

6



This is due to the elliptic form of the dispersion relation 


the 2 magnon conservation of momentum and energy problem has 2 solutions.

Explicit Bethe Ansatz 
It is not possible to find a solution away from the center of mass 
frame unless we use extra momenta to parameterise the solution.

to solve the chain for arbitrary 2-magnon centre-of-mass momentum K, as that would be
necessary if we were to feed the solution into the three-magnon problem at a later stage.
Therefore, starting from the next section we will study how to solve the 2-magnon problem
for K 6= 0. Apart from exhibiting several interesting features, our solution will also shed
light on the origin of the centre-of-mass contact terms, which were introduced by hand.

5.2.2 General solution

To solve the 2-magnon problem beyond the CoM frame we will follow the work of [62, 63]
on alternating chains. As usual for the coordinate Bethe ansatz, one starts by splitting the
eigenvalue equations into non-interacting and interacting ones. The non-interacting ones
are those involving states where no two magnons are next to each other. First one finds
all solutions of the non-interacting equations (all the values of the momenta p1 and p2 that
solve all those equations with given energy E and total momentum K). One then combines
them appropriately to solve the interacting equations. The new feature in [62, 63] compared
to more standard spin chains is that there is more than one set of momenta p1, p2 giving
the same E and K. These additional momenta also need to be added in order to obtain a
solution of the interacting equations.

One can also think of the above in terms of the formalism of [64], where apart from
the usual Bethe swap of momenta one allows a discrete number of additional momenta. (In
that work the additional momenta were needed for the 3-magnon problem, but our case we
see the need already at the 2-magnon level).

For the non-interacting equations (5.14) we make the same ansatz as (5.19), including
the relations (5.18). The difference is in treating the interacting equations (5.15). Following
the treatment in [62, 63], instead of contact terms as in (5.20) we will add an extra set of
momenta {k1, k2} which also correspond to the same total momentum K and energy E2. By
adding these terms (and their permutations) to our ansatz, we will show that the interacting
equations are satisfied without any constraints on the momenta.

The additional momenta

The main important feature of the type of dispersion relation (5.8) is that one can
achieve the same 2-magnon energy with more than one set of momenta. To see this, let us
consider the solutions of the equations

K = p1 + p2 and E2(p1, p2) = E1(p1) + E2(p2) (5.36)

for given total momentum K and total energy E2. Rewriting (5.8) slightly, we have

E2(p1, p2) = 2(+ 1/)�
p
1 + 4 + 22 cos(2p1)�

p
1 + 4 + 22 cos(2p1) . (5.37)

For concreteness we focus on the lower branch for both magnons, however the discussion
below applies to all choices of branch (as we will be removing the square roots by squaring
repeatedly). Following the discussion in [62, 63], in order to solve (5.36) we first switch
from p1, p2 to the total momentum K and relative momentum q,

K = p1 + p2 , q =
p1 � p2

2
. (5.38)
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Writing p1,2 = K/2±q and expanding cos(2p1,2) = cosK cos 2q⌥sinK sin 2q, and removing
the square roots by squaring twice, we find that there are two solutions (beyond the usual
swapped solutions q ! �q) for cos(2q) given a fixed E2 and K. The sum of these two
solutions is:

cos(2q1) + cos(2q2) = �
(E2 � 2(+ 1/))2 cosK

2 sin
2K

. (5.39)

Let us assume an initial set of momenta (p1, p2) with sum K = p1 + p2 and difference
2q1 = p1�p2. Then there will be another solution which we will call (k1, k2), with the same
K = k1 + k2 but with difference 2q2 = k1 � k2, given by

k1,2 =
K

2
±
⇡

2
⌥

1

2
arccos

✓
cos(p1 � p2) +

(E2 � 2(+ 1/))2 cosK

2 sin
2K

◆
(5.40)

where we used that arccos(�x) = ⇡ � arccos(x). For real p1, p2, this new set of momenta
is generally complex-valued with equal but opposite imaginary parts (since we always take
K to be real valued). However, depending on the values of the initial p momenta and of
, it is possible for the k momenta to also be real. In the case where the k momenta are
complex, their real parts differ by ⇡. This makes them different from a typical bound state
which has equal real parts given by K/2.

Let us remark that the possibility of additional momenta is not there for the XXX
dispersion relation E2 = 2(1 � cos(p1)) + 2(1 � cos(p2)), where the only solutions (up to
periodicity) are the original p1, p2 and their permutation p2, p1. This feature is characteristic
of staggered-type chains such as the one under study (see e.g. a comment in [15], p.137).
Of course, the swapped solutions q1 ! �q1 and q2 ! �q2 are still there in (5.39), so we
find a total of four solutions of our 2-magnon dispersion relation:

Direct p Swapped p Direct k Swapped k

(p1, p2) (p2, p1) (k1, k2) (k2, k1)

As all these momenta have the same total energy and momentum, the most general
wavefunction for fixed K and E2 will be a superposition of all of them. As expected from
the discussion in [62, 63], generalising the Bethe ansatz to include the k momenta will
indeed lead to a solution of the interacting equations.

Generalised Bethe ansatz

Given the above discussion, we will now update the wavefunction (5.16) to include all
the four sets of momenta. We have:

|p1, p2, k1, k2 i =
X

r<s

⇣
 ee(2r, 2s) |2r, 2si+ eo(2r, 2s+1) |2r, 2s+1i

+ oe(2r�1, 2s) |2r�1, 2si+  oo(2r+1, 2s+1) |2r+1, 2s+1i

⌘
,

(5.41)
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Hinting to that the only correct rapidity is an elliptic one!

Theta function parametrisation
It is also instructive to switch to a theta function parametrisation. We will only show

this explicitly for the choice of modular parameter m = 4 as in the XY sector. Using
standard relations (e.g. [74]) we can write

eip = i
p

ksn(v/) = i
p

k
1
p
k

✓1(u)

✓4(u)
= i

✓1(u)

✓4(u)
, (7.12)

eip = i
p

ksn(v/) = i
✓1(u)

✓4(u)
, (7.13)

where the arguments of the Jacobi and theta functions are related as v/ = 2K(m)u, . For
the XY -sector ratio function we have:

r(u) =

p
kcn(v/)

dn(v/)
=

p

k

 r
k0

k

✓2(u)

✓4(u)

!✓
1

p
k0

✓4(u)

✓3(u)

◆
=

✓2(u)

✓3(u)
. (7.14)

Here we use the nome
q = ei⇡⌧ , where ⌧ = i

K 0
(m)

K(m)
, (7.15)

with m = 4, K 0
(m) = K(1 � m) and our theta function conventions as in [73, 74]. In

particular we have

✓1(u+ 1) = �✓1(u) , ✓1(u+ ⌧) = �e⇡i(2u+⌧)✓1(u) . (7.16)
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The reduced energy is also rather simple to express in terms of theta functions:

E0
(u) = �i

✓4(0)2

✓2(0)✓3(0)

✓2(u)✓3(u)

✓1(u)✓4(u)
, (7.20)

– 65 –

Theta function parametrisation
It is also instructive to switch to a theta function parametrisation. We will only show
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The reduced energy is also rather simple to express in terms of theta functions:

E0
(u) = �i

✓4(0)2
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and given also the relation
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, (7.22)

2 =

✓
✓2(0)

✓3(0)

◆2

(7.23)

the energy shift E(0)� E0
(0) = + 1/ of the total energy E(u) can also be expressed in

terms of theta functions. Finally, the Z2 eigenvalue of the 1-magnon solution is (5.12)

Z2 |pi =
✓3(u)

✓2(u)
|pi. (7.24)

Similarly, for the 2-magnon eigenproblem we can express the wavefunctions (for the CoM,
general and restricted solutions) and their energy and Z2 eigenvalues (summarised in Table
1) in terms of theta functions. Even though we derived these solutions by explicitly solving
the coordinate Bethe ansatz, we could have attempted to guess the wavefunctions simply
by knowing their eigenvalues and modular properties. We believe that point of view will be
helpful in the solution of the multi-magnon problem and also in the study of more general
ADE orbifold eigenproblems.

In Appendix C we provide a simple example of a dynamical alternating chain starting
from Felder’s elliptic R-matrix and using the algebraic Bethe ansatz formalism. The ex-
pressions for the momenta, ratio function and one-magnon energy above are exactly what
one obtains from the ABA approach, apart from the  + 1/ prefactor (i.e. our E0

(u) is
the total energy there). This is natural, as the model we consider in Appendix C is at
a free-fermion point. Although this is a minor difference for one magnon, it leads to the
two-magnon problem we treated in Section 5 being very different (and considerably more
involved) than the two-magnon problem of the model in the appendix, whose S-matrix is
just S = �1. This hints that we need to look for a different uniformisation which is better
adapted to the full energy E(u) rather than the reduced one E0

(u).

8 Conclusions and outlook

In this work we took a fresh look at the spin chains related to the one-loop spectral problem
of the Z2 marginally deformed orbifold of N = 4 SYM. We focused on the holomorphic
SU(3) scalar sector and in particular two different SU(2) subsectors. One of these, the XY -
sector, can be described by a relatively standard alternating Heisenberg chain, while the
other, the XZ sector, can be understood as a slightly more exotic dynamical Temperley-
Lieb model. Both cases are examples of dynamical spin chains, where the Hamiltonian
depends on an additional parameter whose value is dynamically determined at each site of
the chain.
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Interesting eigenvalues under Z2. Much more to do …. 



Conclusions

 N=2 SCFTs enjoy a quantum SU(3)κ symmetry algebra.


 Map the SU(3) scalar sector to a dynamical 15-vertex model.


 Explicit study with the coordinate Bethe ansatz.



Conclusions

 The N<4 theories which can be obtained via orbifolding, 
orientifolding, … the mother N=4 SYM theory, enjoy a 
quantum deformation of PSU(2,2|4).

 For N<4 theories the holomorphic SU(3) sector can be 
captured by a dynamical 15/19-vertex model which is 
specified by the adjacency graph, which is the dual to the 
brane-tiling diagram of the quiver theory. 

Two Conjectures: 



Outlook
 Write down the weights of the 15-vertex models 

(map to the explicit BA solution) and check if they 

obey the star-triangle relation. 


 Shifted cocycle condition important for integrability.


 Introduce the rapidity via Baxterization or via the 

adjoint action.

[EP, Zoubos]



Outlook
 Generalise (ellipticise) everything we have for N=4 SYM.


 Very similar: N=1 SCFTs again starting with orbifolds (big class of theories).


 Study the gravity dual of marginally deformed orbifolds!


 “4D Chern-Simons” approach


 Generalize                                                                                                              

The String Dual to Free N=2 SCFTs

[2005.03064  Costello,Stefański]

[2104.08263 Gaberdiel,Gopakumar]



Thanks!
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